910 resultados para Hexamétaphosphate de sodium


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Sudden infant death syndrome (SIDS) is a leading cause of death during the first 6 months after birth. About 5% to 10% of SIDS may stem from cardiac channelopathies such as long-QT syndrome. We recently implicated mutations in alpha1-syntrophin (SNTA1) as a novel cause of long-QT syndrome, whereby mutant SNTA1 released inhibition of associated neuronal nitric oxide synthase by the plasma membrane Ca-ATPase PMCA4b, causing increased peak and late sodium current (I(Na)) via S-nitrosylation of the cardiac sodium channel. This study determined the prevalence and functional properties of SIDS-associated SNTA1 mutations. METHODS AND RESULTS Using polymerase chain reaction, denaturing high-performance liquid chromatography, and DNA sequencing of SNTA1's open reading frame, 6 rare (absent in 800 reference alleles) missense mutations (G54R, P56S, T262P, S287R, T372M, and G460S) were identified in 8 (approximately 3%) of 292 SIDS cases. These mutations were engineered using polymerase chain reaction-based overlap extension and were coexpressed heterologously with SCN5A, neuronal nitric oxide synthase, and PMCA4b in HEK293 cells. I(Na) was recorded using the whole-cell method. A significant 1.4- to 1.5-fold increase in peak I(Na) and 2.3- to 2.7-fold increase in late I(Na) compared with controls was evident for S287R-, T372M-, and G460S-SNTA1 and was reversed by a neuronal nitric oxide synthase inhibitor. These 3 mutations also caused a significant depolarizing shift in channel inactivation, thereby increasing the overlap of the activation and inactivation curves to increase window current. CONCLUSIONS Abnormal biophysical phenotypes implicate mutations in SNTA1 as a novel pathogenic mechanism for the subset of channelopathic SIDS. Functional studies are essential to distinguish pathogenic perturbations in channel interacting proteins such as alpha1-syntrophin from similarly rare but innocuous ones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Congenital long-QT syndrome (LQTS) is potentially lethal secondary to malignant ventricular arrhythmias and is caused predominantly by mutations in genes that encode cardiac ion channels. Nearly 25% of patients remain without a genetic diagnosis, and genes that encode cardiac channel regulatory proteins represent attractive candidates. Voltage-gated sodium channels have a pore-forming alpha-subunit associated with 1 or more auxiliary beta-subunits. Four different beta-subunits have been described. All are detectable in cardiac tissue, but none have yet been linked to any heritable arrhythmia syndrome. METHODS AND RESULTS We present a case of a 21-month-old Mexican-mestizo female with intermittent 2:1 atrioventricular block and a corrected QT interval of 712 ms. Comprehensive open reading frame/splice mutational analysis of the 9 established LQTS-susceptibility genes proved negative, and complete mutational analysis of the 4 Na(vbeta)-subunits revealed a L179F (C535T) missense mutation in SCN4B that cosegregated properly throughout a 3-generation pedigree and was absent in 800 reference alleles. After this discovery, SCN4B was analyzed in 262 genotype-negative LQTS patients (96% white), but no further mutations were found. L179F was engineered by site-directed mutagenesis and heterologously expressed in HEK293 cells that contained the stably expressed SCN5A-encoded sodium channel alpha-subunit (hNa(V)1.5). Compared with the wild-type, L179F-beta4 caused an 8-fold (compared with SCN5A alone) and 3-fold (compared with SCN5A + WT-beta4) increase in late sodium current consistent with the molecular/electrophysiological phenotype previously shown for LQTS-associated mutations. CONCLUSIONS We provide the seminal report of SCN4B-encoded Na(vbeta)4 as a novel LQT3-susceptibility gene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peripheral neuropathic pain is a disabling condition resulting from nerve injury. It is characterized by the dysregulation of voltage-gated sodium channels (Navs) expressed in dorsal root ganglion (DRG) sensory neurons. The mechanisms underlying the altered expression of Na(v)s remain unknown. This study investigated the role of the E3 ubiquitin ligase NEDD4-2, which is known to ubiquitylate Navs, in the pathogenesis of neuropathic pain in mice. The spared nerve injury (SNI) model of traumatic nerve injury-induced neuropathic pain was used, and an Na(v)1.7-specific inhibitor, ProTxII, allowed the isolation of Na(v)1.7-mediated currents. SNI decreased NEDD4-2 expression in DRG cells and increased the amplitude of Na(v)1.7 and Na(v)1.8 currents. The redistribution of Na(v)1.7 channels toward peripheral axons was also observed. Similar changes were observed in the nociceptive DRG neurons of Nedd4L knockout mice (SNS-Nedd4L(-/-)). SNS-Nedd4L(-/-) mice exhibited thermal hypersensitivity and an enhanced second pain phase after formalin injection. Restoration of NEDD4-2 expression in DRG neurons using recombinant adenoassociated virus (rAAV2/6) not only reduced Na(v)1.7 and Na(v)1.8 current amplitudes, but also alleviated SNI-induced mechanical allodynia. These findings demonstrate that NEDD4-2 is a potent posttranslational regulator of Na(v)s and that downregulation of NEDD4-2 leads to the hyperexcitability of DRG neurons and contributes to the genesis of pathological pain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ubiquitylation plays an important role in the control of Na⁺ homeostasis by the kidney. It is well established that the epithelial Na⁺ channel ENaC is regulated by the ubiquitin-protein ligase NEDD4-2, limiting ENaC cell surface expression and activity. Ubiquitylation can be reversed by the action of deubiquitylating enzymes (DUBs). One such DUB, USP2-45, was identified previously as an aldosterone-induced protein in the kidney and is also a circadian output gene. In heterologous expression systems, USP2-45 binds to ENaC, deubiquitylates it, and enhances channel density and activity at the cell surface. Because the role of USP2-45 in renal Na⁺ transport had not been studied in vivo, we investigated here the effect of Usp2 gene inactivation in this process. We demonstrate first that USP2-45 protein has a rhythmic expression with a peak at ZT12. Usp2-KO mice did not show any differences from wild-type littermates with respect to the diurnal control of Na⁺ or K⁺ urinary excretion and plasma levels either on a standard diet or after acute and chronic changes to low- and high-Na⁺ diets, respectively. Moreover, they had similar aldosterone levels on either a low- or high-Na⁺ diet. Blood pressure measurements using telemetry did not reveal variations compared with control mice. Usp2-KO mice did not display alterations in expression of genes involved in sodium homeostasis or the ubiquitin system, as evidenced by transcriptome analysis in the kidney. Our data suggest that USP2 does not play a primary role in the control of Na⁺ balance or blood pressure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The pore-forming subunit of the cardiac sodium channel, Na v1.5, has been previously found to be mutated in genetically determined arrhythmias. Na v1.5 associates with many proteins that regulate its function and cellular localisation. In order to identify more in situ Na v1.5 interacting proteins, genetically-modified mice with a high-affinity epitope in the sequence of Na v1.5 can be generated. Methods: In this short study, we (1) compared the biophysical properties of the sodium current (I Na) generated by the mouse Na v1.5 (mNa v1.5) and human Na v1.5 (hNa v1.5) constructs that were expressed in HEK293 cells, and (2) investigated the possible alterations of the biophysical properties of the human Na v1.5 construct that was modified with specific epitopes. Results: The biophysical properties of mNa v1.5 were similar to the human homolog. Addition of epitopes either up-stream of the N-terminus of hNa v1.5 or in the extracellular loop between the S5 and S6 transmembrane segments of domain 1, significantly decreased the amount of I Na and slightly altered its biophysical properties. Adding green fluorescent protein (GFP) to the N-terminus did not modify any of the measured biophysical properties of hNa v1.5. Conclusions: These findings have to be taken into account when planning to generate genetically-modified mouse models that harbour specific epitopes in the gene encoding mNa v1.5.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cardiac voltage-gated sodium channel, Nav1.5, plays a central role in cardiac excitability and impulse propagation and associates with the dystrophin multiprotein complex at the lateral membrane of cardiomyocytes. It was previously shown that Nav1.5 protein content and the sodium current (l Na) were both decreased in cardiomyocytes of dystrophin-deficient mdx (5cv) mice. In this study, wild-type and mdx (5cv) mice were treated for 7 days with the proteasome inhibitor MG132 (10 μg/Kg/24 h) using implanted osmotic mini pumps. MG132 rescued both the total amount of Nav1.5 protein and l Na but, unlike in previous studies, de novo expression of dystrophin was not observed in skeletal or cardiac muscle. This study suggests that the reduced expression of Nav1.5 in dystrophin-deficient cells is dependent on proteasomal degradation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our knowledge about the lunar environment is based on a large volume of ground-based, remote, and in situ observations. These observations have been conducted at different times and sampled different pieces of such a complex system as the surface-bound exosphere of the Moon. Numerical modeling is the tool that can link results of these separate observations into a single picture. Being validated against previous measurements, models can be used for predictions and interpretation of future observations results. In this paper we present a kinetic model of the sodium exosphere of the Moon as well as results of its validation against a set of ground-based and remote observations. The unique characteristic of the model is that it takes the orbital motion of the Moon and the Earth into consideration and simulates both the exosphere as well as the sodium tail self-consistently. The extended computational domain covers the part of the Earth’s orbit at new Moon, which allows us to study the effect of Earth’s gravity on the lunar sodium tail. The model is fitted to a set of ground-based and remote observations by tuning sodium source rate as well as values of sticking, and accommodation coefficients. The best agreement of the model results with the observations is reached when all sodium atoms returning from the exosphere stick to the surface and the net sodium escape rate is about 5.3 × 1022 s−1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this study was to investigate the effect of sodium intake on renal tissue oxygenation in humans. To this purpose, we measured renal hemodynamics, renal sodium handling, and renal oxygenation in normotensive (NT) and hypertensive (HT) subjects after 1 week of a high-sodium and 1 week of a low-sodium diet. Renal oxygenation was measured using blood oxygen level-dependent magnetic resonance. Tissue oxygenation was determined by the measurement of R2* maps on 4 coronal slices covering both kidneys. The mean R2* values in the medulla and cortex were calculated, with a low R2* indicating a high tissue oxygenation. Ten male NT (mean age: 26.5+/-7.4 years) and 8 matched HT subjects (mean age: 28.8+/-5.7 years) were studied. Cortical R2* was not different under the 2 conditions of salt intake. Medullary R2* was significantly lower under low sodium than high sodium in both NT and HT subjects (28.1+/-0.8 versus 31.3+/-0.6 s(-1); P<0.05 in NT; and 27.9+/-1.5 versus 30.3+/-0.8 s(-1); P<0.05, in HT), indicating higher medullary oxygenation under low-sodium conditions. In NT subjects, medullary oxygenation was positively correlated with proximal reabsorption of sodium and negatively with absolute distal sodium reabsorption, but not with renal plasma flow. In HT subjects, medullary oxygenation correlated with the 24-hour sodium excretion but not with proximal or with the distal handling of sodium. These data demonstrate that dietary sodium intake influences renal tissue oxygenation, low sodium intake leading to an increased renal medullary oxygenation both in normotensive and young hypertensive subjects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

STATEMENT OF PROBLEM: Long-term fluoride application on the teeth of patients receiving radiation therapy for head and neck tumors results in excessive staining and roughening of ceramic restorations. PURPOSE: The purpose of this in vitro study was to compare the staining effects of 2 fluoride treatments on ceramic disks by simulating 1 year of clinical exposure at 10 minutes per day. In addition, 2 different surface preparations were tested. MATERIAL AND METHODS: Eighty ceramic disks (IPS Empress), 20 x 2 mm, were fabricated. Half of the disks were glazed, and the remaining disks were polished. All disks were brushed for 3 minutes with a soft-bristle power toothbrush and mild dentifrice (baseline) and were immersed in 1 of the 2 fluoride products (0.4% SnF(2), Gel-Kam Gel, or 1.1% NaF, Prevident 5000) for 10 days (n=20). Means and standard deviations of color change (Delta E), surface roughness (Ra, um), and surface gloss (GU) of the ceramic material were measured with a reflection spectrophotometer, a profilometer, and a gloss meter, respectively, at baseline and after fluoride treatment. Two- and 3-way ANOVA (alpha=.05), with surface preparation (polished vs. glazed) and fluoride treatment (0.4% SnF(2) or 1.1% NaF) as independent variables and condition (baseline vs. after fluoride treatment) as a repeated measure, was used to analyze the data. Fisher's PLSD intervals (alpha=.05) were calculated for comparisons among the means. RESULTS: The polished specimens had significantly higher Delta E values, significantly higher surface gloss values, and significantly lower surface roughness values than the glazed specimens before fluoride treatment (P<.001). After both fluoride treatments, ceramic disks exhibited significantly higher surface roughness values when polished and significantly lower surface gloss values when glazed or polished (P<.001). The glazed specimens presented significantly higher surface roughness (P<.001) and lower surface gloss values (P<.001) when treated with 0.4% SnF(2) as compared to NaF. For the polished specimens, there was no significant difference in surface roughness and surface gloss values between the 2 fluoride treatments. CONCLUSIONS: Use of 0.4% SnF(2) and 1.1% NaF gels, in vitro, caused significant color change in the polished IPS Empress ceramic disks. Polishing of the ceramic surface before immersion in either fluoride agent caused the ceramic tested to be more resistant to etching by the 2 solutions tested. The NaF caused less deterioration of the porcelain surface and was less stain inducing than SnF(2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE Changes in electrolyte homeostasis are important causes of acid-base disorders. While the effects of chloride are well studied, only little is known of the potential contributions of sodium to metabolic acid-base state. Thus, we investigated the effects of intensive care unit (ICU)-acquired hypernatremia on acid-base state. METHODS We included critically ill patients who developed hypernatremia, defined as a serum sodium concentration exceeding 149 mmol/L, after ICU admission in this retrospective study. Data on electrolyte and acid-base state in all included patients were gathered in order to analyze the effects of hypernatremia on metabolic acid-base state by use of the physical-chemical approach. RESULTS A total of 51 patients were included in the study. The time of rising serum sodium and hypernatremia was accompanied by metabolic alkalosis. A transient increase in total base excess (standard base excess from 0.1 to 5.5 mmol/L) paralleled by a transient increase in the base excess due to sodium (base excess sodium from 0.7 to 4.1 mmol/L) could be observed. The other determinants of metabolic acid-base state remained stable. The increase in base excess was accompanied by a slight increase in overall pH (from 7.392 to 7.429, standard base excess from 0.1 to 5.5 mmol/L). CONCLUSIONS Hypernatremia is accompanied by metabolic alkalosis and an increase in pH. Given the high prevalence of hypernatremia, especially in critically ill patients, hypernatremic alkalosis should be part of the differential diagnosis of metabolic acid-base disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrolyte disorders are common and potentially fatal laboratory findings in emergency patients. Approximately 20 % of patients in the emergency department present with either hyponatremia or hypernatremia. Recently it was shown that disorders of serum sodium are not only an expression of the severity of the underlying disease but independent predictors for the outcome of patients. They directly influence patient daily life by causing not only gait and concentration disturbances but also an increased tendency to fall together with a reduced bone mass. Given these new data it is even more important to detect and adequately correct dysnatremia in patients in the emergency department. Acute, symptomatic dysnatremia should be corrected promptly by use of 3 % NaCl for hyponatremia and 5 % glucose for hypernatremia. A close monitoring of serum sodium concentration is, however, essential in any case of correction of hyponatremia or hypernatremia in order to avoid rapid overcorrection and subsequent complications. A profound knowledge of the mechanisms underlying the development of hyponatremia, e.g. diuretics, syndrome of inappropriate antidiuretic hormone secretion (SIADH), heart failure and cirrhosis of the liver and hypernatremia, e.g. dehydration, infusions, diuretics and osmotic diuresis is essential. The present article describes the epidemiology, etiology and correction of hyponatremia and hypernatremia on the basis of current knowledge with special emphasis on emergency department patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Expression of the Na$\sp+$/glucose cotransporter (SGLT1), a differentiated function of the pig kidney epithelial cell line LLC-PK$\sb1$ derived from proximal tubule, was further investigated. The differentiation inducer hexamethylene bisacetamide (HMBA) and IBMX, an inhibitor of cAMP phosphodiesterase, each stimulated a significant increase in Na$\sp+$/glucose cotransport activity, levels of the 75 kD cotransporter subunit and steady-state levels of the SGLT1 message. The action of HMBA is associated with involvement of polyamines and protein kinase C, and is synergistic with cAMP. We provide evidence that cAMP-elevating agents increase Na$\sp+$/glucose cotransporter expression, at least in part, via a post-transcriptional mechanism. Two molecular species of SGLT1 mRNA (3.9 kb and 2.2 kb) are transcribed from the same gene in LLC-PK$\sb1$ cells and differ only in the length of the 3$\sp\prime$ untranslated region (3$\sp\prime$ UTR). cAMP elevation differentially stabilized the 3.9 kb SGLT1 transcript from degradation but not the 22 kb species. UV-cross-linking and label transfer experiments indicated that cyclic AMP elevation was associated with formation of a 48 kD protein complex with a specific domain within the 3$\sp\prime$ UTR of SGLT1 mRNA. The binding was competitively inhibited by poly (U) and other U-rich RNA species such as c-fos ARE, and modulated by a protein kinase A-mediated phosphorylation/dephosphorylation mechanism. The binding site was mapped to a 120-nucleotide 3$\sp\prime$ UTR sequence which contains a uridine-rich region (URE). Our study provides the first demonstration that renal SGLT1 is post-transcriptionally regulated by a phosphorylation/dephosphorylation mechanism, and provides a deeper insight into gene regulation of this physiologically important cotransporter. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ion channel proteins are regulated by different types of posttranslational modifications. The focus of this review is the regulation of voltage-gated sodium channels (Navs) upon their ubiquitylation. The amiloride-sensitive epithelial sodium channel (ENaC) was the first ion channel shown to be regulated upon ubiquitylation. This modification results from the binding of ubiquitin ligase from the Nedd4 family to a protein-protein interaction domain, known as the PY motif, in the ENaC subunits. Many of the Navs have similar PY motifs, which have been demonstrated to be targets of Nedd4-dependent ubiquitylation, tagging them for internalization from the cell surface. The role of Nedd4-dependent regulation of the Nav membrane density in physiology and disease remains poorly understood. Two recent studies have provided evidence that Nedd4-2 is downregulated in dorsal root ganglion (DRG) neurons in both rat and mouse models of nerve injury-induced neuropathic pain. Using two different mouse models, one with a specific knockout of Nedd4-2 in sensory neurons and another where Nedd4-2 was overexpressed with the use of viral vectors, it was demonstrated that the neuropathy-linked neuronal hyperexcitability was the result of Nav1.7 and Nav1.8 overexpression due to Nedd4-2 downregulation. These studies provided the first in vivo evidence of the role of Nedd4-2-dependent regulation of Nav channels in a disease state. This ubiquitylation pathway may be involved in the development of symptoms and diseases linked to Nav-dependent hyperexcitability, such as pain, cardiac arrhythmias, epilepsy, migraine, and myotonias.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cardiac late Na (+) current is generated by a small fraction of voltage-dependent Na (+) channels that undergo a conformational change to a burst-gating mode, with repeated openings and closures during the action potential (AP) plateau. Its magnitude can be augmented by inactivation-defective mutations, myocardial ischemia, or prolonged exposure to chemical compounds leading to drug-induced (di)-long QT syndrome, and results in an increased susceptibility to cardiac arrhythmias. Using CytoPatch™ 2 automated patch-clamp equipment, we performed whole-cell recordings in HEK293 cells stably expressing human Nav1.5, and measured the late Na (+) component as average current over the last 100 ms of 300 ms depolarizing pulses to -10 mV from a holding potential of -100 mV, with a repetition frequency of 0.33 Hz. Averaged values in different steady-state experimental conditions were further corrected by the subtraction of current average during the application of tetrodotoxin (TTX) 30 μM. We show that ranolazine at 10 and 30 μM in 3 min applications reduced the late Na (+) current to 75.0 ± 2.7% (mean ± SEM, n = 17) and 58.4 ± 3.5% ( n = 18) of initial levels, respectively, while a 5 min application of veratridine 1 μM resulted in a reversible current increase to 269.1 ± 16.1% ( n = 28) of initial values. Using fluctuation analysis, we observed that ranolazine 30 μM decreased mean open probability p from 0.6 to 0.38 without modifying the number of active channels n, while veratridine 1 μM increased n 2.5-fold without changing p. In human iPSC-derived cardiomyocytes, veratridine 1 μM reversibly increased APD90 2.12 ± 0.41-fold (mean ± SEM, n = 6). This effect is attributable to inactivation removal in Nav1.5 channels, since significant inhibitory effects on hERG current were detected at higher concentrations in hERG-expressing HEK293 cells, with a 28.9 ± 6.0% inhibition (mean ± SD, n = 10) with 50 μM veratridine.