885 resultados para HILAR ADENOCARCINOMA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Divalent metal transporter-1 (SLC11A2/DMT1) uses the H+ electrochemical gradient as the driving force to transport divalent metal ions such as Fe2+, Mn2+ and others metals into mammalian cells. DMT1 is ubiquitously expressed, most notably in proximal duodenum, immature erythroid cells, brain and kidney. This transporter mediates H+-coupled transport of ferrous iron across the apical membrane of enterocytes. In addition, in cells such as to erythroid precursors, following transferrin receptor (TfR) mediated endocytosis; it mediates H+-coupled exit of ferrous iron from endocytic vesicles into the cytosol. Dysfunction of human DMT1 is associated with several pathologies such as iron deficiency anemia hemochromatosis, Parkinson's disease and Alzheimer's disease, as well as colorectal cancer and esophageal adenocarcinoma, making DMT1 an attractive target for drug discovery. In the present study, we performed a ligand-based virtual screening of the Princeton database (700,000 commercially available compounds) to search for pharmacophore shape analogs of recently reported DMT1 inhibitors. We discovered a new compound, named pyrimidinone 8, which mediates a reversible linear non-competitive inhibition of human DMT1 (hDMT1) transport activity with a Ki of ∼20 μM. This compound does not affect hDMT1 cell surface expression and shows no dependence on extracellular pH. To our knowledge, this is the first experimental evidence that hDMT1 can be allosterically modulated by pharmacological agents. Pyrimidinone 8 represents a novel versatile tool compound and it may serve as a lead structure for the development of therapeutic compounds for pre-clinical assessment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This is the first report describing a case where prolonged, severe malabsorption from brown bowel syndrome progressed to multifocally spread small bowel adenocarcinoma. This case involves a female patient who was initially diagnosed with chronic jejunitis associated with primary diffuse lymphangiectasia at the age of 26 years. The course of the disease was clinically, endoscopically, and histologically followed for 21 years until her death at the age 47 due to multifocal, metastasizing adenocarcinoma of the small bowel. Multiple lipofuscin deposits (so-called brown bowel syndrome) and severe jejunitis were observed microscopically, and sections of the small bowel showed dense lymphoplasmacytic infiltration of the lamina propria as well as blocked lymphatic vessels. After several decades, multifocal nests of adenocarcinoma cells and extensive, flat, neoplastic mucosal proliferations were found only in the small bowel, along with a loss of the mismatch repair protein MLH1 as a long-term consequence of chronic jejunitis with malabsorption. No evidence was found for hereditary nonpolyposis colon carcinoma syndrome. This article demonstrates for the first time multifocal carcinogenesis in the small bowel in a malabsorption syndrome in an enteritis-dysplasia-carcinoma sequence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND The aim of this study was to assess sex-associated differences in lung cancer patients in Eastern Switzerland. METHODS All 670 lung cancer patients referred to the cancer center in St. Gallen between January 2000 and December 2005 were retrospectively analyzed. We investigated sex-associated differences in age, smoking habits, histology, stage, treatment and survival. RESULTS There were 474 (71%) men and 196 (29%) women with lung cancer. Mean age at the time of diagnosis was 64 years for women and 67 years for men (p = 0.01). Of the patients <55 years of age, 47 (24%) were women and only 65 (14%) were men. Men smoked significantly more than women (median pack-years: 50 vs. 30; p < 0.001). Of the heavy smokers (>40 pack-years), 278 (56%) were men and 68 (33%) were women. More men had squamous cell carcinoma (36%) than women (17%). Conversely, more women presented with adenocarcinoma (48%) than men (27%). No significant sex-associated differences were observed when analyzing first treatments received. Median overall survival was 10 months for both sexes. CONCLUSIONS In Eastern Switzerland, women with lung cancer were younger, more likely to have smoked significantly less and more likely to have adenocarcinoma, compared to men with lung cancer. These findings are consistent with those found in other western populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Listeria (L.) monocytogenes causes fatal infections in many species including ruminants and humans. In ruminants, rhombencephalitis is the most prevalent form of listeriosis. Using multilocus variable number tandem repeat analysis (MLVA) we recently showed that L. monocytogenes isolates from ruminant rhombencephalitis cases are distributed over three genetic complexes (designated A, B and C). However, the majority of rhombencephalitis strains and virtually all those isolated from cattle cluster in MLVA complex A, indicating that strains of this complex may have increased neurotropism and neurovirulence. The aim of this study was to investigate whether ruminant rhombencephalitis strains have an increased ability to propagate in the bovine hippocampal brain-slice model and can be discriminated from strains of other sources. For this study, forty-seven strains were selected and assayed on brain-slice cultures, a bovine macrophage cell line (BoMac) and a human colorectal adenocarcinoma cell line (Caco-2). They were isolated from ruminant rhombencephalitis cases (n = 21) and other sources including the environment, food, human neurolisteriosis cases and ruminant/human non-encephalitic infection cases (n = 26). RESULTS All but one L. monocytogenes strain replicated in brain slices, irrespectively of the source of the isolate or MLVA complex. The replication of strains from MLVA complex A was increased in hippocampal brain-slice cultures compared to complex C. Immunofluorescence revealed that microglia are the main target cells for L. monocytogenes and that strains from MLVA complex A caused larger infection foci than strains from MLVA complex C. Additionally, they caused larger plaques in BoMac cells, but not CaCo-2 cells. CONCLUSIONS Our brain slice model data shows that all L. monocytogenes strains should be considered potentially neurovirulent. Secondly, encephalitis strains cannot be conclusively discriminated from non-encephalitis strains with the bovine organotypic brain slice model. The data indicates that MLVA complex A strains are particularly adept at establishing encephalitis possibly by virtue of their higher resistance to antibacterial defense mechanisms in microglia cells, the main target of L. monocytogenes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Tumor infiltrating T-lymphocytes (TILs) have been shown to play an important prognostic role in many carcinomas. The identification of prognostic relevant morphological or molecular factors is a major area of interest in the diagnostic process and for the treatment of highly aggressive esophageal adenocarcinoma. Studies about the impact of TILs in this tumor have not shown completely congruent results yet. We present a comprehensive study about the clinical and pathological impact of TIL in esophageal adenocarcinomas. Methods: A next generation tissue microarray (TMA) of 117 primary resected esophageal adenocarcinomas was analyzed for CD3+, CD8+ and FoxP3+ TIL using immunohistochemistry. The TMA contained three cores of the tumor center and the tumor periphery per each case. Slides were scanned with a high-resolution scanner (ScanScope CS; Aperio) and an image analysis software (Aperio Image Scope) was used to determine the TIL counts. The results were correlated with clinicopathological parameters. Results: CD3+, CD8+ and FoxP3+ TIL counts showed a significant correlation among each other (p<0.001 each, range: 0.27-0.77). TIL counts were categorized as high and low levels, according to the median. Tumors with high FoxP3+ intratumoral lymphocyte counts were more frequently of lower pT category (p<0.001) and without lymph node metastasis (p=0.04). High levels of FoxP3+ lymphocytes in the tumor center and the periphery were also associated with better prognosis (p<0.001 and p=0.041, respectively) in univariate analysis. A similar prognostic impact was seen for high levels of CD3+ and CD8+ TIL in the tumor center, but not in the periphery (p=0.047 and p=0.011, respectively). In multivariate analysis high central FoxP3+TIL levels were an independent prognostic factor (HR=0.4; p=0.023) which was similar to a combination score of CD3+/CD8+/FoxP3+ TIL (HR=0.54; p=0.027) or CD8+/Foxp3+ TIL (HR=0.052; p=0.020) and superior to pT- and pN category (p>0.05 each). Conclusion: This study demonstrates a significant beneficial prognostic impact of high TIL counts in the tumor center of esophageal adenocarcinomas, in particular with regards to the subpopulation of FoxP3+ and CD8+ T-regulatory cells. The determination of intratumoral lymphocytic counts and application of TIL scores can improve prognostic accuracy of pathologic reports of these tumors and may be helpful for better risk stratification of esophageal adenocarcinoma patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four 8-azaguanine (AG)-resistant and 5-bromodeoxyuridine (BUdR)-resistant clones of a mouse mammary adenocarcinoma cell line, RIII 7387, were developed and analyzed for their tumorigenic properties, in vitro characteristics, and virus expression. These characteristics were analyzed for relationships of any of the cellular parameters and the ability of these lines to produce tumors in syngeneic animals.^ The results of this study demonstrated that the parental line consists of a heterogeneous population of cells. Doubling times, saturation densities, and 2-deoxy-D-glucose uptake varied between sublines. In addition, while all sublines were found to express both B-type and C-type viral antigenic markers, levels of the major B-type and C-type viral proteins varied in the subclones. The sublines also differed markedly in their response to the presence of dexamethasone, glutathione, and insulin in the tissue culture medium.^ Variations in retrovirus expression were convirmed by electron microscopy. Budding and extracellular virus particles were seen in the majority of the cell lines. Virus particles in one of the BUdR-resistant lines, BUD9, were found however, only in inclusions and vacuoles. The AG-resistant subline AGE11 was observed to be rich in intracytoplasmic A particles. The examination of these cell lines for the presence of retroviral RNA-dependent DNA polymerase (RT) activity revealed that some B-type RT activity could be found in the culture fluid of most of the cell lines but that little C-type RT activity could be found suggesting that the C-type virus particles expressed by these RIII clones contain a defective RT.^ Tumor clones also varied in their ability to form tumors in syngeneic RIII mice. Tumor incidence ranged from 50% to 100%. The majority of the tumors regressed within 30 days post infection.^ Statistical analysis indicated that while these clones varied in their characteristics, there was no correlation between the ability of these cell lines to form tumors in syngeneic mice and any of the other characteristics examined.^ These studies have confirmed and extended the growing evidence that tumors, regardless of their natural origin, consist of heterogeneous subpopulations of cells which may vary widely in their in vitro growth behavior, their antigenic expression, and their malignant properties. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The major complications for tumor therapy are (i) tumor spread (metastasis); (ii) the mixed nature of tumors (heterogeneity); and (iii) the capacity of tumors to evolve (progress). To study these tumor characteristics, the rat 13762NF mammary adenocarcinoma was cloned and studied for metastatic properties and sensitivities to therapy (chemotherapy, radiation and hyperthermia). The cell clones were heterogeneous and no correlation between metastatic potential and therapeutic sensitivities was observed. Further, these phenotypes were unstable during passage in vitro; yet, the changes were clone dependent and reproducible using different cryoprotected cell stocks. To understand the phenotypic instability, subclones were isolated from low and high passage cell clones. Each subclone possessed a unique composite phenotype. Again, no apparent correlation was seen between metastatic potential and sensitivity to therapy. The results demonstrated that (1) tumor cells are heterogeneous for multiple phenotypes; (2) tumor cells are unstable for multiple phenotypes; (3) the magnitude, direction and time of occurrence of phenotypic drift is clone dependent; (4) the sensitivity of cell clones to ionizing radiation (gamma or heat) and chemotherapy agents is independent of their metastatic potential; (5) shifts in metastatic potential and sensitivity to therapy may occur simultaneously but are not linked; and (6) tumor cells independently diverge to form several subpopulations with unique phenotypic profiles. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prostate cancer remains the second leading cause of male cancer deaths in the United States, yet the molecular mechanisms underlying this disease remain largely unknown. Cytogenetic and molecular analyses of prostate tumors suggest a consistent association with the loss of chromosome 10. Previously, we have defined a novel tumor suppressor locus PAC-1 within chromosome 10pter-q11. Introduction of the short arm of chromosome 10 into a prostatic adenocarcinoma cell line PC-3H resulted in dramatic tumor suppression and restoration of a programmed cell death pathway. Using a combined approach of comparative genomic hybridization and microsatellite analysis of PC-3H, I have identified a region of hemizygosity within 10p12-p15. This region has been shown to be involved in frequent loss of heterozygosity in gliomas and melanoma. To functionally dissect the region within chromosome 10p containing PAC-1, we developed a strategy of serial microcell fusion, a technique that allows the transfer of defined fragments of chromosome 10p into PC-3H. Serial microcell fusion was used to transfer defined 10p fragments into a mouse A9 fibrosarcoma cell line. Once characterized by FISH and microsatellite analyses, the 10p fragments were subsequently transferred into PC-3H to generate a panel of microcell hybrid clones containing overlapping deletions of chromosome 10p. In vivo and microsatellite analyses of these PC hybrids identified a small chromosome 10p fragment (an estimated 31 Mb in size inclusive of the centromere) that when transferred into the PC-3H background, resulted in significant tumor suppression and limited a region of functional tumor suppressor activity to chromosome 10p12.31-q11. This region coincides with a region of LOH demonstrated in prostate cancer. These studies demonstrate the utility of this approach as a powerful tool to limit regions of functional tumor suppressor activity. Furthermore, these data used in conjunction with data generated by the Human Genome Project lent a focused approach to identify candidate tumor suppressor genes involved in prostate cancer. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pancreatic adenocarcinoma is currently the fifth-leading cause of cancer-related death in the United States. Like with other solid tumors, the growth and metastasis of pancreatic adenocarcinoma are dependent on angiogenesis. Vascular endothelial growth factor (VEGF) is a key angiogenic molecule that plays an important role in angiogenesis, growth and metastasis of many types of human cancer, including pancreatic adenocarcinoma. However, the expression and regulation of VEGF in human pancreatic cancer cells are mostly unknown. ^ To examine the hypothesis that VEGF is constitutively expressed in human pancreatic cancer cells, and can be further induced by tumor environment factors such as nitric oxide, a panel of human pancreatic cancer cell lines were studied for constitutive and inducible VEGF expression. All the cell lines examined were shown to constitutively express various levels of VEGF. To identify the mechanisms responsible for the elevated expression of VEGF, its rates of turnover and transcription were then investigated. While the half-live of VEGF was unaffected, higher transcription rates and increased VEGF promoter activity were observed in tumor cells that constitutively expressed elevated levels of VEGF. Detailed VEGF promoter analyses revealed that the region from −267 to +50, which contains five putative Sp1 binding sites, was responsible for this VEGF promoter activity. Further deletion and point mutation analyses indicated that deletion of any of the four proximal Sp1 binding sites significantly diminished VEGF promoter activity and when all four binding sites were mutated, it was completely abrogated. Consistent with these observations, high levels of constitutive Sp1 expression and DNA binding activities were detected in pancreatic cancer cells expressing high levels of VEGF. Collectively, our data indicates that constitutively expressed Sp1 leads to the constitutive expression of VEGF, and implicates that both molecules involve in the aggressive pathogenesis of human pancreatic cancer. ^ Although constitutively expressed in pancreatic cancer cells, VEGF can be further induced. In human pancreatic cancer specimens, we found that in addition to VEGF, both inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) were overexpressed, suggesting that nitric oxide might upregulate VEGF expression. Indeed, a nitric oxide donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP) significantly induced VEGF mRNA expression and protein secretion in pancreatic adenocarcinoma cells in a time- and dose-dependant manner. Using a luciferase reporter containing both the VEGF promoter and the 3′ -UTR, we showed that SNAP significantly increased luciferase activity in human pancreatic cancer cells. Notwithstanding its ability to induce VEGF in vitro, pancreatic cancer cells genetically engineered to produce NO did not exhibit increased tumor growth. This inability of NO to promote tumor growth appears to be related to NO-mediated cytotoxicity. The balance between NO mediated effects on pro-angiogenesis and cytotoxicity would determine the biological outcome of NO action on tumor cells. ^ In summary, we have demonstrated that VEGF is constitutively expressed in human pancreatic cancer cells, and that overexpression of transcription factor Sp1 is primarily responsible. Although constitutively expressed in these cells, VEGF can be further induced by NO. However, using a mouse model, we have shown that NO inhibited tumor growth by promoting cytotoxicity. These studies suggest that both Sp1 and NO may be important targets for designing potentially effective therapies of human pancreatic cancer and warrant further investigation. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lung cancer is the leading cause of cancer death. However, poor survival using conventional therapies fuel the search for more rational interventions. The objective of this study was to design and implement a 4HPR-radiation interaction model in NSCLC, employing a traditional clinical modality (radiation), a relatively new, therapeutically unexplored agent (4HPR) and rationally combining them based on molecular mechanistic findings pertaining to their interactions. To test the hypothesis that 4HPR sensitizes cells to radiation-induced cell death via G2+M accumulation, we designed a working model consisting of H522 adenocarcinoma cells (p53, K-ras mutated) derived from an NSCLC patient; 4HPR at concentrations up to 10 μM; and X radiation up to 6 Gy generated by a patient-dedicated Phillips RT-250 X ray unit at 250 KV, 15 mA, 1.85 Gy/min. We found that 4HPR produced time- and dose-dependent morphological changes, growth inhibition, and DNA damage-inducing enhancement of reactive oxygen species. A transient G2+M accumulation of cells maximal at 24 h of continuous 4HPR exposure was used for irradiation time scheduling. Our data demonstrated enhanced cell death (both apoptotic and necrotic) in irradiated cells pre-treated with 4HPR versus those with either stressor alone. 4HPR's effect of increased NSCLC cells' radioresponse was confirmed by clonogenic assay. To explore these practical findings from a molecular mechanistic perspective, we further investigated and showed that levels of cyclin B1 and p34cdc2 kinase—both components of the mitosis promoting factor (MPF) regulating the G2/M transition—did not change following 4HPR treatment. Likewise, cdc25C phosphatase was not altered. However, enhanced p34cdc2 phosphorylation on its Thr14Tyr15 residues—indicative of its inactivation and increased expression of MPF negative regulators chk1 and wee1 kinases—were supportive of explaining 4HPR-treated cells' accumulation. Hence, p34cdc2 phosphorylation, chk1, and wee1 warrant further evaluation as potential molecular targets for 4HPR-X radiation combination. In summary, we (1) demonstrated that 4HPR not only induces cell death by itself, but also increases NSCLC cells' subsequent radioresponse, indicative of potential clinical applicability, and (2) for the first time, shed light on deciphering 4HPR-X radiation molecular mechanisms of interaction, including the finding of 4HPR's role as a p34cdc2 inactivator via Thr14Tyr15 phosphorylation. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cancer is a result of defects in the coordination of cell proliferation and programmed cell death. The extent of cell death is physiologically controlled by the activation of a programmed suicide pathway that results in a morphologically recognizable form of death termed apoptosis. Inducing apoptosis in tumor cells by gene therapy provides a potentially effective means to treat human cancers. The p84N5 is a novel nuclear death domain containing protein that has been shown to bind an amino terminal domain of retinoblastoma tumor suppressor gene product (pRb). Expression of N5 can induce apoptosis that is dependent upon its intact death domain and is inhibited by pRb. In many human cancer cells the functions of pRb are either lost through gene mutation or inactivated by different mechanisms. N5 based gene therapy may induce cell death preferentially in tumor cells relative to normal cells. We have demonstrated that N5 gene therapy is less toxic to normal cells than to tumor cells. To test the possibility that N5 could be used in gene therapy of cancer, we have generated a recombinant adenovirus engineered to express N5 and test the effects of viral infection on growth and tumorigenicity of human cancer cells. Adenovirus N5 infection significantly reduced the proliferation and tumorigenicity of breast, ovarian, and osteosarcoma tumor cell lines. Reduced proliferation and tumorigenicity were mediated by an induction of apoptosis as indicated by DNA fragmentation in infected cells. We also test the potential utility of N5 for gene therapy of pancreatic carcinoma that typically respond poorly to conventional treatment. Adenoviral mediated N5 gene transfer inhibits the growth of pancreatic cancer cell lines in vitro. N5 gene transfer also reduces the growth and metastasis of human pancreatic adenocarcinoma in subcutaneous and orthotopic mouse model. Interestingly, the pancreatic adenocarcinoma cells are more sensitive to N5 than they are to p53, suggesting that N5 gene therapy may be effective in tumors resistant to p53. We also test the possibilities of the use of N5 and p53 together on the inhibition of pancreatic cancer cell growth in vitro and vivo. Simultaneous use of N5 and RbΔCDK has been found to exert a greater extent on the inhibition of pancreatic cancer cell growth in vitro and in vivo. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prostatic carcinoma is the most prevalent cancer detected in men. Bortezomib is the first proteasome inhibitor to undergo clinical trials for several forms of cancer. Although we know this class of agent preferentially kills cancer cells, our knowledge of proteasome inhibition mechanisms of induced death is far from complete. We investigated the effects of bortezomib on the LNCaP-Pro5 (Pro5) and PC-3-Pro4 (Pro4) human prostatic adenocarcinoma cells lines. We showed a reduction in proliferation and an increase in DNA fragmentation, caspase 3 activity, and cell surface phosphatidyl serine exposure. The bortezomib-treated tumors from both cell lines were dramatically reduced, and apoptosis was induced. There was also a reduction in proliferation in the treated tumors from both cells lines. We looked at changes in the levels of the proangiogenic factors VEGF, IL-8 and bFGF in vitro and in vivo. Although there was a reduction in the levels of VEGF produced by the Pro5 cell line and tumor due to bortezomib, no similar observations were made for the other angiogenic factors or in the Pro4 cells. We investigated the effects of bortezomib on p53 in the Pro5 cell line. Bortezomib induced strong stabilization of p53. It did not promote phosphorylation on serines 15 and 24 and p53 remained bound to its inhibitor, mdm2. Nonetheless, confocal microscopy revealed that bortezomib stimulated p53 translocation to the nucleus and enhanced p53 DNA binding, accumulation of p53-dependant transcripts, and activation of a p53-responsive reporter gene. Furthermore, stable transfectants of LNCaP-Pro5 expressing the p53 inhibitor, HPV-E6, displayed reduced bortezomib-induced p53 activation and cell death. Our data shows bortezomib to induce antitumor effects in the human Pro4 and Pro5 prostatic adenocarcinoma cell lines by the direct induction of apoptosis. The drug also causes a reduction in cell proliferation and mean vessel density while modulating the secretion of proangiogenic factors. Although we show that proteasome inhibition stimulates p53 activation via a novel mechanism in Pro5 cells, it is also toxic to p53 null cells as is seen in the Pro4 line. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pancreatic adenocarcinoma is the fourth leading cause of adult cancer death in the United States. At the time of diagnosis, most patients with pancreatic cancer have advanced and metastatic disease, which makes most of the traditional therapeutic strategies are ineffective for pancreatic cancer. A better understanding of the molecular basis of pancreatic cancer will provide the approach to identify the new strategies for early diagnosis and treatment. NF-κB is a family of transcription factor that play important roles in immune response, cell growth, apoptosis, and tumor development. We have shown that NF-κB is constitutively activated in most human pancreatic tumor tissues and cell lines, but not in the normal tissues and HPV E6E7 gene-immortalized human pancreatic ductal epithelial cells (HPDE/E6E7). By infecting the pancreatic cancer cell line Aspc-1 with a replication defective retrovirus expressing phosphorylation-defective IκBα (IκBαM), the constitutive NF-κB activation is blocked. Subsequent injection of this Aspc-1/IκBαM cells into the pancreas of athymic nude mice showed that liver metastasis is suppressed by the blockade of NF-κB activation. Current studies showed that an autocrine mechanism accounts for the constitutive activation of NF-κB in metastatic human pancreatic cancer cell lines, but not in nonmetastatic human pancreatic cancer cell lines. Further investigation showed that interleukin-1α (IL-1α) was the primary cytokine secreted by these cells that activates NF-κB. Inhibition of IL-1α activity suppressed the constitutive activation of NF-κB and the expression of its downstream target gene, uPA, in metastatic pancreatic cancer cell lines. Even though IL-1α is one of the previously identified NF-κB downstream target genes, our results demonstrate that regulation of IL-1α expression is independent of NF-κB and primarily dependent on AP-1 activity, which is in part induced by overexpression of EGF receptors and activation of MAP kinases. In conclusion, our findings suggest a possible mechanism by which NF-κB is constitutively activated in metastatic human pancreatic cancer cells and a possible missing mechanistic links between inflammation and cancer. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies have implicated Ca2+ fluxes in the control of apoptosis but their exact roles in regulating the process remain obscure. Because Ca2+ can serve as a signal for cytochrome c release from isolated mitochondria, we hypothesized that alterations in intracellular Ca2+ compartmentalization might serve as a release signal in whole cells undergoing apoptosis. Exposure of human PC-3 prostate adenocarcinoma cells to staurosporine or DNA damaging agent (doxorubicin) but not to anti-Fas antibody led to early release of Ca2+ from the endoplasmic reticulum and subsequent accumulation of Ca2+ within mitochondria. Both events were blocked in cells stably transfected with Bcl-2 but were not affected by treatment with the pancaspase inhibitor, zVADfmk. The effects of staurosporine were associated with re-localization of Bax from the cytosol to both endoplasmic reticular and mitochondrial membranes. Neither ER Ca 2+ pool depletion nor mitochondrial Ca2+ uptake were observed in DU-145 cells that possess a frameshift mutation in the Bax gene unless wild-type Bax was restored via adenoviral gene transfer. Cytochrome c release and downstream features of apoptosis were attenuated by treatment with an inhibitor of mitochondria) Ca2+ uptake (RU-360). Although, direct pharmacological ER Ca2+ pool emptying in cells treated with thapsigargin did not lead to early cytochrome c release, pretreatment of cells with staurosporine dramatically sensitized mitochondria to thapsigargin-induced cytochrome c release. Together, our data demonstrate that ER-to-mitochondrial Ca2+ fluxes promote cytochrome c release and apoptosis in cells exposed to some (but not all) pro-apoptosic stimuli. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lung cancer is a devastating disease with very poor prognosis. The design of better treatments for patients would be greatly aided by mouse models that closely resemble the human disease. The most common type of human lung cancer is adenocarcinoma with frequent metastasis. Unfortunately, current models for this tumor are inadequate due to the absence of metastasis. Based on the molecular findings in human lung cancer and metastatic potential of osteosarcomas in mutant p53 mouse models, I hypothesized that mice with both K-ras and p53 missense mutations might develop metastatic lung adenocarcinomas. Therefore, I incorporated both K-rasLA1 and p53RI72HΔg alleles into mouse lung cells to establish a more faithful model for human lung adenocarcinoma and for translational and mechanistic studies. Mice with both mutations ( K-rasLA1/+ p53R172HΔg/+) developed advanced lung adenocarcinomas with similar histopathology to human tumors. These lung adenocarcinomas were highly aggressive and metastasized to multiple intrathoracic and extrathoracic sites in a pattern similar to that seen in lung cancer patients. This mouse model also showed gender differences in cancer related death and developed pleural mesotheliomas in 23.2% of them. In a preclinical study, the new drug Erlotinib (Tarceva) decreased the number and size of lung lesions in this model. These data demonstrate that this mouse model most closely mimics human metastatic lung adenocarcinoma and provides an invaluable system for translational studies. ^ To screen for important genes for metastasis, gene expression profiles of primary lung adenocarcinomas and metastases were analyzed. Microarray data showed that these two groups were segregated in gene expression and had 79 highly differentially expressed genes (more than 2.5 fold changes and p<0.001). Microarray data of Bub1b, Vimentin and CCAM1 were validated in tumors by quantitative real-time PCR (QPCR). Bub1b , a mitotic checkpoint gene, was overexpressed in metastases and this correlated with more chromosomal abnormalities in metastatic cells. Vimentin, a marker of epithelial-mesenchymal transition (EMT), was also highly expressed in metastases. Interestingly, Twist, a key EMT inducer, was also highly upregulated in metastases by QPCR, and this significantly correlated with the overexpression of Vimentin in the same tumors. These data suggest EMT occurs in lung adenocarcinomas and is a key mechanism for the development of metastasis in K-ras LA1/+ p53R172HΔg/+ mice. Thus, this mouse model provides a unique system to further probe the molecular basis of metastatic lung cancer.^