920 resultados para Grain elevators.
Resumo:
Im Sedimentationsraum der südwestlichen Ostsee verdient der nordöstliche Teil der Kieler Bucht besonderes Interesse. Dort öffnet sich die wichtigste Verbindung zwischen Ostsee und Nordsee. Von den Austauschvorgängen, durch welche diese Meeresräume aufeinander Einfluß nehmen, ist gerade jenes Gebiet entscheidend betroffen. Die Beobachtung der Dynamik des Austausches, die Beobachtung der Transportlast, welche von den Wassermassen bewegt wird, und schließlich auch die Beobachtung der Beziehungen, welche sich zwischen dem Zusammentreffen von Wassermassen unterschiedlicher physikalischer Eigenschaften und der Sedimentbildung ergeben, läßt deshalb vor allem dort wesentliche Hinweise zum Verständnis der Sedimentationsvorgänge in der südlichen Ostsee erhoffen. In der vorliegenden Arbeit wurden an 49 Durchschnittsproben die Korngrößenverteilungen und Schwermineralgehalte von Sedimenten aus dem Südausgang des Großen Beltes untersucht. 1. Es wurden sechs in sich morphologisch etwa gleichwertige Gebiete ausgegliedert, die jeweils durch Sedimente mit ähnlichen Korngrößenverteilungen ausgezeichnet sind. Nach Lage, Typ und genetischer Ausdeutbarkeit fügen sich diese Gebiete dem von O. PRATJE (1939, 1948) gegebenen Modell der Sedimentationszonen gut ein. 2. Innerhalb dieser Gebiete ergibt sich für Sande in mehr als 20 m Wassertiefe südwärts gerichteter Transport. Oberhalb dieser Tiefe läßt sich stellenweise nordwärts gerichteter Transport nachweisen. 3. Der Schwermineralgehalt der Sedimente bleibt immer unter zwei Prozent. Die höchsten Anteile (1,7 bzw. 1,9%) werden in den Sedimenten der Tiefen Rinne und der ufernahen Bereiche des Großen Beltes angetroffen. 4. Die Korngrößenverteilungen der Sedimente werden nach der Lage der Modi in bis zu drei (Kies-, Sand-, Silt-) Komponenten zerlegt. Die Beteiligung der Silt-Komponente wird entscheidend von der Salzgehaltssprungschicht beeinflußt. 5. Es bestehen offensichtlich Zusammenhänge zwischen der Schlicksedimentation und der Salzgehaltsschichtung auch in der weiteren südlichen Ostsee.
Resumo:
Sand-silt-clay distribution was determined at Scripps on samples collected at the time the cores were split and described. The sediment classification used here is that of Shepard (1954); sand, silt, and clay boundaries are determined on the basis of the Wentworth (1922) scale. Thus the sand, silt, and clay fractions are composed of particles whose diameters range from 2000 to 62.5 µm, 62.5 to 3.91 µm, and less than 3.91 µm, respectively. This classification is applied regardless of sediment type and origin.
Resumo:
Grain size of 139 unconsolidated sediment samples from seven DSDP sites in the Guaymas Basin and the southeastern tip of the Baja California Peninsula was determined by sieve and pipette techniques. Shepard (1954) classification and Inman (1952) parameters correlation were used for all samples. Sediment texture ranged from sand to silty clay. On the basis of grain-size parameter, the sediments can be divided into three broad groups: (1) very fine sands and coarse silts; (2) medium- to very fine silts; and (3) clays and coarse silts.
Resumo:
Sand-silt-clay distribution was determined on 10-cm**3 sediment samples collected at the time the cores were split and described.
Resumo:
An extensive, high-resolution, sedimentological-geochemical survey was done using geo-acoustics, XRF-core scans, ICP-AES, AMS 14C-dating and grain size analyses of sediments in 11 cores from the Gulf of Taranto, the southern Adriatic Sea, and the central Ionian Sea spanning the last 16 cal. ka BP. Comparable results were obtained for cores from the Gallipoli Shelf (eastern Gulf of Taranto), and the southern Adriatic Sea suggesting that the dominant provenance of Gallipoli Shelf sediments is from the western Adriatic mud belt. The 210Pb and 14C-dated high-accumulation-rate sediments permit a detailed reconstruction of climate variability over the last 16 cal. ka BP. Although, the Glacial-Interglacial transition is generally dry and stable these conditions are interrupted by two phases of increased detrital input during the Bølling-Allerød and the late Younger Dryas. The event during the Younger Dryas period is characterized by increased sediment inputs from southern Italian sources. This suggests that run-off was higher in southern- compared to northern Italy. At approximately ~ 7 cal. ka BP, increased detrital input from the Adriatic mud belt, related to sea level rise and the onset of deep water formation in the Adriatic Sea, is observed and is coincident with the end of sapropel S1 formation in the southern Adriatic Sea. During the mid-to-late Holocene we observed millennial-scale events of increased detrital input, e.g. during the Roman Humid Period, and of decreased detrital input, e.g., Medieval Warm Period. These dry/wet spells are consistent with variability in the North Atlantic Oscillation (NAO). A negative state of the NAO and thus a more advanced penetration of the westerlies into the central Mediterranean, that result in wet conditions in the research area concord with events of high detrital input e.g., during the Roman Humid Period. In contrast, a positive state of the NAO, resulting in dry conditions in the Mediterranean, dominated during events of rapid climate change such as the Medieval Warm Period and the Bronze Age.
Resumo:
A comparative analysis of grain size composition of shallow water terrigenous sediments from the southeastern Laptev Sea was carried out using methods developed by V.P. Petelin and A. Atterberg. Potential of these methods and possibilities of improvement of domestic techniques for grain size analysis are discussed.
Resumo:
Sand-silt-clay distribution was determined on 10-cm**3 sediment samples collected at the time the cores were split and described. The sediment classification used here is that of Shepard (1954), with the sand, silt, and clay boundaries based on the Wentworth (1922) scale. Thus the sand, silt, and clay fractions are composed of particles whose diameters are 2000 to 62.5 µm, 62.5 to 3.91 µm, and less than 3.91 µm, respectively. This classification is applied without regard to sediment type and origin; therefore, the sediment names used in this table may differ from those used elsewhere in this volume; e.g., a silt composed of nannofossils may be called a nannofossil ooze in a site chapter.