993 resultados para Gowrie Conspiracy, 1600.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A methodology for the synthesis of novel polymerisable spiropyrans with photomechanical properties suitable for subsequent copolymerisation with either vinyl or acrylate-based biomaterials is described. UV-vis spectroscopic characterisation of photoisomerism shows that photochromic behaviour with respect to related non-polymerisable compounds is retained and is solvent dependent. In acetone, conventional spiropyran-merocyanine photochromism is observed for nitro-spiropyran derivatives, whereas in dichloromethane both nitro-spiropyrans and spiropyrans isomerise to merocyanines which rapidly form H-aggregates. The monomers were designed such that an alkyl spacer of variable length, both electronically and sterically, separates the polymerisable moiety from the photochromic core and allows steric aspects of the resulting photomechanical behaviour to be explored. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An electronically polarizable model has been developed for the ionic liquid 1-ethyl-3-methylimidazolium nitrate (EMIM+/NO3-), Molecular dynamics simulation studies were then performed on both the polarizable and nonpolarizable versions of the model. Comparisons of shear viscosity and diffusion constants at 400 K show that the effects of polarizability are quite substantial and the polarizable model results are in better agreement with the experimental values.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is shown how the fractional probability density diffusion equation for the diffusion limit of one-dimensional continuous time random walks may be derived from a generalized Markovian Chapman-Kolmogorov equation. The non-Markovian behaviour is incorporated into the Markovian Chapman-Kolmogorov equation by postulating a Levy like distribution of waiting times as a kernel. The Chapman-Kolmogorov equation so generalised then takes on the form of a convolution integral. The dependence on the initial conditions typical of a non-Markovian process is treated by adding a time dependent term involving the survival probability to the convolution integral. In the diffusion limit these two assumptions about the past history of the process are sufficient to reproduce anomalous diffusion and relaxation behaviour of the Cole-Cole type. The Green function in the diffusion limit is calculated using the fact that the characteristic function is the Mittag-Leffler function. Fourier inversion of the characteristic function yields the Green function in terms of a Wright function. The moments of the distribution function are evaluated from the Mittag-Leffler function using the properties of characteristic functions and a relation between the powers of the second moment and higher order even moments is derived. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inertia-corrected Debye model of rotational Brownian motion of polar molecules was generalized by Coffey et al. [Phys. Rev. E, 65, 32 102 (2002)] to describe fractional dynamics and anomalous rotational diffusion. The linear- response theory of the normalized complex susceptibility was given in terms of a Laplace transform and as a function of frequency. The angular-velocity correlation function was parametrized via fractal Mittag-Leffler functions. Here we apply the latter method and complex-contour integral- representation methods to determine the original time-dependent amplitude as an inverse Laplace transform using both analytical and numerical approaches, as appropriate. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A semi-phenomenological model describing wideband dielectric and far-infrared spectra of liquid water was proposed recently by the same authors [J. Mol. Struct. 606 (2002) 9], where a small dipole-moment component changing harmonically with time determines a weak absorption band (termed here the R-band) centred at the wavenumber v similar to 200 cm(-1). In the present work, a rough molecular theory of the R-band based on the concept of elastic interactions is given. Stretching and bending of hydrogen bonds cause restricted rotation (RR) of a polar water molecule in terms of a dimer comprising the H- bonded molecules. Analytical expression for the RR frequency nu(str) is derived as a function of the RR amplitude, geometrical parameters and force constants. The density g(nu(str)) of frequency distribution is shown to be centred in the R-band. The spectrum of the dipolar auto-correlation function calculated for this structural-dynamical model is found. A composite model comprising two intermolecular potentials is proposed, which yields for water a good description of the experimental wideband (from 0 to 1000 cm(- 1)) spectra of complex permittivity and of absorption coefficient. The presented interpretation of these spectra is based on a concept that water presents a two-component solution, with components differing by the types of molecular rotation. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wideband far infrared (FIR) spectra of complex permittivity e(p) of ice are calculated in terms of a simple analytical theory based on the method of dipolar autocorrelation functions. The molecular model represents a revision of the model recently presented for liquid water in Adv. Chem. Phys. 127 (2003) 65. A composite two-fractional model is proposed. The model is characterised by three phenomenological potential wells corresponding to the three FIR bands observed in ice. The first fraction comprises dipoles reorienting in a rather narrow and deep hat-like well; these dipoles generate the librational band centred at the frequency approximate to 880 cm(-1). The second fraction comprises elastically interacting particles; they generate two nearby bands placed around frequency 200 cm(-1). For description of one of these bands the harmonic oscillator (HO) model is used, in which translational oscillations of two charged molecules along the H-bond are considered. The other band is produced by the H-bond stretch, which governs hindered rotation of a rigid dipole. Such a motion and its dielectric response are described in terms of a new cut parabolic (CP) model applicable for any vibration amplitude. The composite hat-HO-CP model results in a smooth epsilon(nu) ice spectrum, which does not resemble the noise-like spectra of ice met in the known literature. The proposed theory satisfactorily agrees with the experimental ice spectrum measured at - 7 degrees C. The calculated longitudinal optic-transverse optic (LO-TO) splitting occurring at approximate to 250 cm(-1) qualitatively agrees with the measured data. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple molecular analytical theory of dielectric relaxation in strongly polar fluids is considered in terms of a semi- phenomenological approach. Theoretical spectra epsilon(v), a(v) of complex permittivity and absorption coefficient are fully determined by a form of intermolecular potential well, in which a dipole reorients. In a recent publication by VI. Gaiduk, O.F. Nielsen, and T.S. Perova [J. Molliq 95 (1002) 1-25] the wideband spectra of liquid H2O and D2O were described in terms of a composite model comprising the rectangular and the cosine squared potential wells. Much better results are achieved in this work, where the rectangular well is replaced by a well with a rounded bottom termed the hat-curved well. The spectrum of the auto-correlation function (ACF) is calculated for such a potential. The proposed theory of a composite model, comprising hat-curved and parabolic wells, is applied for liquid water. This model is capable for describing the Debye relaxation region, the second relaxation region in the submillimeter wavelength range, and the far infra-red (FIR) e(v), a(v) spectra, where an intense librational band and an additional weak band are placed, respectively, near 700 cm(-1) and 200 cm(-1). The latter band reflects the features of so-called specific (viz. directly related to H-bonds) interactions and the former band reflects the features of unspecific interactions. The physical mechanisms connected with these types of interactions are discussed in terms of two relevant types of water structure (types of molecular rotation). The proposed theory is also applied to a non-associated liquid in terms of one hat-curved potential well. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The continuum distorted-wave eikonal initial-state (CDW-EIS) theory of Crothers and McCann (J Phys B 1983, 16, 3229) used to describe ionization in ion-atom collisions is generalized (G) to GCDW-EIS to incorporate the azimuthal angle dependence of each CDW in the final-state wave function. This is accomplished by the analytic continuation of hydrogenic-like wave functions from below to above threshold, using parabolic coordinates and quantum numbers including magnetic quantum numbers, thus providing a more complete set of states. At impact energies lower than 25 keVu(-1), the total ionization cross-section falls off, with decreasing energy, too quickly in comparison with experimental data. The idea behind and motivation for the GCDW-EIS model is to improve the theory with respect to experiment by including contributions from nonzero magnetic quantum numbers. We also therefore incidentally provide a new derivation of the theory of continuum distorted waves for zero magnetic quantum numbers while simultaneously generalizing it. (C) 2004 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A nonlinear equation of motion is found for the dimer comprising two charged H2O molecules. The THz dielectric response to nonharmonic vibration of a nonrigid dipole, forming the hydrogen bond (HB), is found in the direction transverse to this bond. An explicit expression is derived for the autocorrelator that governs the spectrum generated by transverse vibration (TV) of such a dipole. This expression is obtained by analytical solution of the truncated set of recurrence equations. The far infrared (FIR) spectra of ice at the temperature - 7 degrees C are calculated. The wideband, in the wavenumber (frequency) v range 0... 100.0 cm(-1), spectra are obtained for liquid water at room temperature and for supercooled water at -5.6 degrees C. All spectra are represented in terms of the complex permittivity epsilon(v) and the absorption coefficient alpha(v). The obtained analytical formula for epsilon comprises the term epsilon(perpendicular to) pertinent to the studied TV mechanism with three additional terms Delta epsilon(q), Delta epsilon(mu), and epsilon(or) arising, respectively, from: elastic harmonic vibration of charged molecules along the H-bond; elastic reorientation of HB permanent dipoles; and rather free libration of permanent dipoles in 'defects' of water/ice structure. The suggested TV-dielectric relaxation mechanism allows us: (a) to remove the THz 'deficit' of loss epsilon" inherent in previous theoretical studies; (b) to explain the THz loss and absorption spectra in supercooled (SC) water; and (c) to describe, in agreement with the experiment, the low- and high-frequency tails of the two bands of ice H2O located in the range 10...300 cm(-1). Specific THz dielectric properties of SC water are ascribed to association of water molecules, revealed in our study by transverse vibration of HB charged molecules. (C) 2006 Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Density functional calculations with simulated annealing have been used to study the reactions of chains of bisphenol A polycarbonate (BPA-PC) with sodium phenoxide (NaOPh), diphenyl carbonate (DPC), and tetraphenylphosphonium phenoxide (PPh4OPh). These calculations extend our work on the reactions of LiOPh, NaOPh, and phenol with the cyclic tetramer of BPA-PC. We study, in particular, chain growth catalyzed by NaOPh and PPh4OH. The energy barriers for reactions with PPh4OPh are somewhat larger than those involving LiOPh and NaOPh, but they are significantly lower than those involving phenol (HOPh), due in part to the collective rearrangement of phenyl groups in the reacting molecules. We discuss in the Appendix the bonds between alkali metal atoms (Na in the present calculations) and other atoms (here oxygen) that are analogous to the more familiar "hydrogen bonds".

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface plasmon polaritons (SPPs) are excited with light of wavelength lambda (1) = 632.8 nm on or near a gentle Ag/Ag step structure using focused beam, prism coupling and detected using a bare, sharpened fibre tip. The tip-sample separation is controlled by means of an evanescent optical field at wavelength lambda (2) = 543.5 nm in a photon scanning tunnelling microscope (PSTM). The SPP propagation properties are first characterised on both the thin and thick sections of the Ag film structure either side of the step, both macroscopically, using attenuated total reflection, and microscopically from the PSTM images; the two techniques yield very good agreement. It is found that the SPP propagation length is similar to 10-11 mum across the step in each direction (thick to thin and vice versa) as observed in the PSTM images. Thus, with reference to the propagation lengths of 14.2 and 11.7 mum for the thick and thin planar parts of the Ag film respectively, it is concluded that the SPPs negotiate the step reasonably successfully. Importantly, also, it is shown that images may be produced, displaying SPPs with either an artificially enhanced (similar to 15-20 mum) or truncated (5-8 mum) propagation length across the step. Consideration of such images leads us to suggest the possibility that the photon tunnelling occurs in a local water environment. (C) 2001 Elsevier Science B.V. All rights reserved.