945 resultados para Generalized Weyl Fractional q-Integral Operator
Resumo:
Various Tb theorems play a key role in the modern harmonic analysis. They provide characterizations for the boundedness of Calderón-Zygmund type singular integral operators. The general philosophy is that to conclude the boundedness of an operator T on some function space, one needs only to test it on some suitable function b. The main object of this dissertation is to prove very general Tb theorems. The dissertation consists of four research articles and an introductory part. The framework is general with respect to the domain (a metric space), the measure (an upper doubling measure) and the range (a UMD Banach space). Moreover, the used testing conditions are weak. In the first article a (global) Tb theorem on non-homogeneous metric spaces is proved. One of the main technical components is the construction of a randomization procedure for the metric dyadic cubes. The difficulty lies in the fact that metric spaces do not, in general, have a translation group. Also, the measures considered are more general than in the existing literature. This generality is genuinely important for some applications, including the result of Volberg and Wick concerning the characterization of measures for which the analytic Besov-Sobolev space embeds continuously into the space of square integrable functions. In the second article a vector-valued extension of the main result of the first article is considered. This theorem is a new contribution to the vector-valued literature, since previously such general domains and measures were not allowed. The third article deals with local Tb theorems both in the homogeneous and non-homogeneous situations. A modified version of the general non-homogeneous proof technique of Nazarov, Treil and Volberg is extended to cover the case of upper doubling measures. This technique is also used in the homogeneous setting to prove local Tb theorems with weak testing conditions introduced by Auscher, Hofmann, Muscalu, Tao and Thiele. This gives a completely new and direct proof of such results utilizing the full force of non-homogeneous analysis. The final article has to do with sharp weighted theory for maximal truncations of Calderón-Zygmund operators. This includes a reduction to certain Sawyer-type testing conditions, which are in the spirit of Tb theorems and thus of the dissertation. The article extends the sharp bounds previously known only for untruncated operators, and also proves sharp weak type results, which are new even for untruncated operators. New techniques are introduced to overcome the difficulties introduced by the non-linearity of maximal truncations.
Resumo:
This thesis is concerned with the area of vector-valued Harmonic Analysis, where the central theme is to determine how results from classical Harmonic Analysis generalize to functions with values in an infinite dimensional Banach space. The work consists of three articles and an introduction. The first article studies the Rademacher maximal function that was originally defined by T. Hytönen, A. McIntosh and P. Portal in 2008 in order to prove a vector-valued version of Carleson's embedding theorem. The boundedness of the corresponding maximal operator on Lebesgue-(Bochner) -spaces defines the RMF-property of the range space. It is shown that the RMF-property is equivalent to a weak type inequality, which does not depend for instance on the integrability exponent, hence providing more flexibility for the RMF-property. The second article, which is written in collaboration with T. Hytönen, studies a vector-valued Carleson's embedding theorem with respect to filtrations. An earlier proof of the dyadic version assumed that the range space satisfies a certain geometric type condition, which this article shows to be also necessary. The third article deals with a vector-valued generalizations of tent spaces, originally defined by R. R. Coifman, Y. Meyer and E. M. Stein in the 80's, and concerns especially the ones related to square functions. A natural assumption on the range space is then the UMD-property. The main result is an atomic decomposition for tent spaces with integrability exponent one. In order to suit the stochastic integrals appearing in the vector-valued formulation, the proof is based on a geometric lemma for cones and differs essentially from the classical proof. Vector-valued tent spaces have also found applications in functional calculi for bisectorial operators. In the introduction these three themes come together when studying paraproduct operators for vector-valued functions. The Rademacher maximal function and Carleson's embedding theorem were applied already by Hytönen, McIntosh and Portal in order to prove boundedness for the dyadic paraproduct operator on Lebesgue-Bochner -spaces assuming that the range space satisfies both UMD- and RMF-properties. Whether UMD implies RMF is thus an interesting question. Tent spaces, on the other hand, provide a method to study continuous time paraproduct operators, although the RMF-property is not yet understood in the framework of tent spaces.
Resumo:
One of the major tasks in swarm intelligence is to design decentralized but homogenoeus strategies to enable controlling the behaviour of swarms of agents. It has been shown in the literature that the point of convergence and motion of a swarm of autonomous mobile agents can be controlled by using cyclic pursuit laws. In cyclic pursuit, there exists a predefined cyclic connection between agents and each agent pursues the next agent in the cycle. In this paper we generalize this idea to a case where an agent pursues a point which is the weighted average of the positions of the remaining agents. This point correspond to a particular pursuit sequence. Using this concept of centroidal cyclic pursuit, the behavior of the agents is analyzed such that, by suitably selecting the agents' gain, the rendezvous point of the agents can be controlled, directed linear motion of the agents can be achieved, and the trajectories of the agents can be changed by switching between the pursuit sequences keeping some of the behaviors of the agents invariant. Simulation experiments are given to support the analytical proofs.
Resumo:
Conditions for quantum topological invariance of classically topological field theories in the path integral formulation are discussed. Both the three-dimensional Chern-Simons system and a Witten-type topological field theory are shown to satisfy these conditions.
Resumo:
The method proposed here considers the mean flow in the transition zone as a linear combination of the laminar and turbulent boundary layer in proportions determined by the transitional intermittency, the component flows being calculated by approximate integral methods. The intermittency distribution adopted takes into account the possibility of subtransitions within the zone in the presence of strong pressure gradients. A new nondimensional spot formation rate, whose value depends on the pressure gradient, is utilized to estimate the extent of the transition zone. Onset location is determined by a correlation that takes into account freestream turbulence and facility-specific residual disturbances in test data. Extensive comparisons with available experimental results in strong pressure gradients show that the proposed method performs at least as well as differential models, in many cases better, and is always faster.
Resumo:
In this paper, a wireless control strategy for parallel operation of three-phase four-wire inverters is proposed. A generalized situation is considered where the inverters are of unequal power ratings and the loads are nonlinear and unbalanced in nature. The proposed control algorithm exploits the potential of sinusoidal domain proportional+multiresonant controller ( in the inner voltage regulation loop) to make the system suitable for nonlinear and unbalanced loads with a simple and generalized structure of virtual output-impedance loop. The decentralized operation is achieved by using three-phase P/Q droop characteristics. The overall control algorithm helps to limit the harmonic contents and the degree of unbalance in the output-voltage waveform and to achieve excellent power-sharing accuracy in spite of mismatch in the inverter output impedances. Moreover, a synchronized turn on with consequent change over to the droop mode is applied for the new incoming unit in order to limit the circulating current completely. The simulation and experimental results from-1 kVA and -0.5 kVA paralleled units validate the effectiveness of the scheme.
Resumo:
integral to concrete mix proportioning are preparing trial mixes and balancing such factors as reasonable economy against placement, strength, and durability requirements. It is necessary to determine the water-cement and aggregate-cement ratios to satisfy workability requirements and obtain the target 28-day compressive strength. There is no direct, simple method by which the characteristics of cement, namely, fineness and chemical composition, can be considered in proportioning concrete mixes. Based on the physicochemical interactions in the cement-water system, a generalized approach for proportioning concrete mixes has been developed. Trial mix details (water-cement and aggregate-cement ratios) are derived based on any of the accepted methods for proportioning concrete mixes. The workability (compacting factor) and 28-day compressive strength reflect the physicochemical characteristics of cement and form the basis for reproportioning mixes. Based on this data, the final mix is proportioned using the three equations reported in this paper. This method can also be used to obtain a set of concrete mixes with wide ranges of workability and strength.
Resumo:
A new formula for the solution of the general Abel Integral equation is derived, and an important special case is checked with the known result.
Resumo:
In linear elastic fracture mechanics (LEFM), Irwin's crack closure integral (CCI) is one of the signficant concepts for the estimation of strain energy release rates (SERR) G, in individual as well as mixed-mode configurations. For effective utilization of this concept in conjunction with the finite element method (FEM), Rybicki and Kanninen [Engng Fracture Mech. 9, 931 938 (1977)] have proposed simple and direct estimations of the CCI in terms of nodal forces and displacements in the elements forming the crack tip from a single finite element analysis instead of the conventional two configuration analyses. These modified CCI (MCCI) expressions are basically element dependent. A systematic derivation of these expressions using element stress and displacement distributions is required. In the present work, a general procedure is given for the derivation of MCCI expressions in 3D problems with cracks. Further, a concept of sub-area integration is proposed which facilitates evaluation of SERR at a large number of points along the crack front without refining the finite element mesh. Numerical data are presented for two standard problems, a thick centre-cracked tension specimen and a semi-elliptical surface crack in a thick slab. Estimates for the stress intensity factor based on MCCI expressions corresponding to eight-noded brick elements are obtained and compared with available results in the literature.
Resumo:
Studies on compressibility and shear strength aspects are the concern of many investigators concerned with partly saturated soils. In soil engineering connected with partly saturated soils, there are no approaches connecting soil states and stress conditions. The present investigation is essentially a step in this direction. A generalized state parameter, identified with regard to material states is shown to be related to the compressibility and shear strength. The involved parameters are simple and normally determined in routine investigations. The advantage of this approach is that changes in soil states due to external stress conditions and the associated changes in strength can be examined particularly when different types of soils are involved.
Resumo:
We present a method for measuring the local velocities and first-order variations in velocities in a timevarying image. The scheme is an extension of the generalized gradient model that encompasses the local variation of velocity within a local patch of the image. Motion within a patch is analyzed in parallel by 42 different spatiotemporal filters derived from 6 linearly independent spatiotemporal kernels. No constraints are imposed on the image structure, and there is no need for smoothness constraints on the velocity field. The aperture problem does not arise so long as there is some two-dimensional structure in the patch being analyzed. Among the advantages of the scheme is that there is no requirement to calculate second or higher derivatives of the image function. This makes the scheme robust in the presence of noise. The spatiotemporal kernels are of simple form, involving Gaussian functions, and are biologically plausible receptive fields. The validity of the scheme is demonstrated by application to both synthetic and real video images sequences and by direct comparison with another recently published scheme Biol. Cybern. 63, 185 (1990)] for the measurement of complex optical flow.
Resumo:
The Modified Crack Closure Integral (MCCI) technique based on Irwin's crack closure integral concept is very effective for estimation of strain energy release rates G in individual as well as mixed-mode configurations in linear elastic fracture mechanics problems. In a finite element approach, MCCI can be evaluated in the post-processing stage in terms of nodal forces and displacements near the crack tip. The MCCI expressions are however, element dependent and require a systematic derivation using stress and displacement distributions in the crack tip elements. Earlier a general procedure was proposed by the present authors for the derivation of MCCI expressions for 3-dimensional (3-d) crack problems modelled with 8-noded brick elements. A concept of sub-area integration was proposed to estimate strain energy release rates at a large number of points along the crack front. In the present paper a similar procedure is adopted for the derivation of MCCI expressions for 3-d cracks modelled with 20-noded brick elements. Numerical results are presented for centre crack tension and edge crack shear specimens in thick slabs, showing a comparison between present results and those available in the literature.
Resumo:
We present a method for measuring the local velocities and first-order variations in velocities in a time-varying image. The scheme is an extension of the generalized gradient model that encompasses the local variation of velocity within a local patch of the image. Motion within a patch is analyzed in parallel by 42 different spatiotemporal filters derived from 6 linearly independent spatiotemporal kernels. No constraints are imposed on the image structure, and there is no need for smoothness constraints on the velocity field. The aperture problem does not arise so long as there is some two-dimensional structure in the patch being analyzed. Among the advantages of the scheme is that there is no requirement to calculate second or higher derivatives of the image function. This makes the scheme robust in the presence of noise. The spatiotemporal kernels are of simple form, involving Gaussian functions, and are biologically plausible receptive fields. The validity of the scheme is demonstrated by application to both synthetic and real video images sequences and by direct comparison with another recently published scheme [Biol. Cybern. 63, 185 (1990)] for the measurement of complex optical flow.
Resumo:
The Modified Crack Closure Integral (MCCI) technique based on Irwin's crack closure integral concept is very effective for estimation of strain energy release rates G in individual as well as mixed-mode configurations in linear elastic fracture mechanics problems. In a finite element approach, MCCI can be evaluated in the post-processing stage in terms of nodal forces and displacements near the crack tip. The MCCI expressions are however, element dependent and require a systematic derivation using stress and displacement distributions in the crack tip elements. Earlier a general procedure was proposed by the present authors for the derivation of MCCI expressions for 3-dimensional (3-d) crack problems modelled with 8-noded brick elements. A concept of sub-area integration was proposed to estimate strain energy release rates at a large number of points along the crack front. In the present paper a similar procedure is adopted for the derivation of MCCI expressions for 3-d cracks modelled with 20-noded brick elements. Numerical results are presented for centre crack tension and edge crack shear specimens in thick slabs, showing a comparison between present results and those available in the literature.