908 resultados para Gas natural-Mercadotecnia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a review of studies on natural convection heat transfer in the triangular enclosure namely, in attic-shaped space. Much research activity has been devoted to this topic over the last three decades with a view to providing thermal comfort to the occupants in attic-shaped buildings and to minimising the energy costs associated with heating and air-conditioning. Two basic thermal boundary conditions of attic are considered to represent hot and cold climates or day and night time. This paper also reports on a significant number of studies which have been performed recently on other topics related to the attic space, for example, attics subject to localized heating and attics filled with porous media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation of the natural convection boundary layer adjacent to an inclined semi-infinite plate subject to a temperature boundary condition which follows a ramp function up until some specified time and then remains constant is reported. The development of the flow from start-up to a steadystate has been described based on scaling analyses and verified by numerical simulations. Attention in this study has been given to fluids having a Prandtl number Pr less than unity. The boundary layer flow depends on the comparison of the time at which the ramp heating is completed and the time at which the boundary layer completes its growth. If the ramp time is long compared with the steady state time, the layer reaches a quasi steady mode in which the growth of the layer is governed solely by the thermal balance between convection and conduction. On the other hand, if the ramp is completed before the layer becomes steady; the subsequent growth is governed by the balance between buoyancy and inertia, as for the case of instantaneous heating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of periodic thermal forcing on the flow field and heat transfer through an attic space are examined numerically in this paper. We consider the case with a fixed aspect ratio of 0.5 and a fixed Grashof number of 1.33×106. The numerical results reveal that, during the daytime, the flow is stratified; whereas at the night-time, the flow becomes unstable. A number of regular plumes and vortices are observed in the contours of isotherms and stream functions respectively. Moreover, the flow appears to be symmetric during the daytime, and becomes asymmetric at the night-time. It is also found that the flow is weaker during the daytime than that at the night-time in the present case, and the calculated heat transfer rate at the night-time is approximately three times greater than the heat transfer rate during the daytime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A scaling analysis for the natural convection boundary layer adjacent to an inclined semi-infinite plate subject to a non-instantaneous heating in the form of an imposed wall temperature which increases linearly up to a prescribed steady value over a prescribed time is reported. The development of the flow from start-up to a steady-state has been described based on scaling analyses and verified by numerical simulations. The analysis reveals that, if the period of temperature growth on the wall is sufficiently long, the boundary layer reaches a quasisteady mode before the growth of the temperature is completed. In this mode the thermal boundary layer at first grows in thickness and then contracts with increasing time. However, if the imposed wall temperature growth period is sufficiently short, the boundary layer develops differently, but after the wall temperature growth is completed, the boundary layer develops as though the start up had been instantaneous. The steady state values of the boundary layer for both cases are ultimately the same.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural convection thermal boundary layer adjacent to an instantaneous heated inclined flat plate is investigated through a scaling analysis and verified by direct numerical simulations. It is revealed from the analysis that the development of the boundary layer may be characterized by three distinct stages, i.e. a start-up stage, a transitional stage and a steady state stage. These three stages can be clearly identified from the numerical simulations. Major scales including the flow velocity, flow development time, and the thermal and viscous boundary layer thicknesses are established to quantify the flow development at different stages and over a wide range of flow parameters. Details of the scaling analysis are described in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of viscous dissipation on natural convection from a vertical plate placed in a thermally stratified environment has been investigated numerically. The reduced equations are integrated by employing the implicit finite difference scheme or Ke1ler-box method and obtained the effect of heat due to viscous dissipation on the local skin-friction and loca1 Nusselt number at various stratification levels, for fluids having Prandtl number equals 10, 50, and 100. Solutions are also obtained using the perturbation technique for small values of viscous dissipation parameters and compared with the Finite Difference solutions. Effect of the heat transfer due to viscous dissipation and the temperature stratification are also shown on the velocity and temperature distributions in the boundary layer region. A numerical study of laminar doubly diffusive free convection flows adjacent to a vertical surface in a stable thermally stratified medium is also considered for this study. Solutions are obtained using the implicit Finite Difference method and compared with the local non-similarity method. The velocity and temperature distributions for different values of stratification parameter are shown graphically. The results show many interesting aspects of complex interaction of the two buoyant mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanowires of different metal oxides (SnO2, ZnO) have been grown by evaporation-condensation process. Their chemical composition has been investigated by using XPS. The standard XPS quantification through main photoelectron peaks, modified Auger parameter and valence band spectra were examined for the accurate determination of oxidation state of metals in the nanowires. Morphological investigation has been conducted by acquiring and analyzing the SEM images. For the simulation of working conditions of sensor, the samples were annealed in ultra high vacuum (UHV) up to 500°C and XPS analysis repeated after this treatment. Finally, the nanowires of SnO 2 have were used to produce a novel gas sensor based on Pt/oxide/SiC structure and operating as Schottky diode. Copyright © 2008 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pt/graphene nanosheet/SiC based devices are fabricated and characterized and their performances toward hydrogen gas are investigated. The graphene nanosheets are synthesized via the reduction of spray-coated graphite oxide deposited onto SiC substrates. Raman and X-ray photoelectron spectroscopies indicate incomplete reduction of the graphite oxide, resulting in partially oxidized graphene nanosheet layers of less than 10 nm thickness. The effects of interfaces on the nonlinear behavior of the Pt/graphene and graphene/SiC junctions are investigated. Current-voltage measurements of the sensors toward 1% hydrogen in synthetic air gas mixture at various temperatures ranging up to 100. ° C are performed. From the dynamic response, a voltage shift of ∼100 mV is recorded for 1% hydrogen at a constant current bias of 1 mA at 100. °C. © 2010 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pt/nanostructured molybdenum oxide (MoO3) /SiC Schottky diode based gas sensors were fabricated for hydrogen (H2) gas sensing. Due to the enhanced performance, which is ascribed to the application of MoO3 nanostructures, these devices were used in reversed bias. MoO3 characterization by scanning electron microscopy showed morphology of randomly orientated nanoplatelets with thicknesses between 50 and 500 nm. An α-Β mixed phase crystallographic structure of MoO3 was characterized by x-ray diffraction. At 180 °C, 1.343 V voltage shift in the reverse I-V curve and a Pt/ MoO3 barrier height change of 20 meV were obtained after exposure to 1% H2 gas in synthetic air. © 2009 American Institute of Physics.