989 resultados para GM
Resumo:
Flat-sheet microporous membranes from F2.4 for membrane distillation (MD) were prepared by phase inversion process. Dimethylacetamide (DMAC) and LiClO(4)(.)3H(2)O/trimethyl phosphate (TMP) were, respectively, used as solvent and pore-forming additives. The effects of casting solution composition, exposure time prior to coagulation and temperature of precipitation bath on F2.4 membrane structure were investigated. The morphology of resultant porous membrane was observed by scanning electron microcopy. Some natures of F2.4 porous membrane after drying in air, such as mechanical properties and hydrophobicity, were exhibited and compared with poly(vinylidene fluoride) (PVDF) membrane prepared by the same ways. Stress-at-break and strength stress of F2.4 microporous membrane are higher than that of PVDF membrane, and elongation percentage of F2.4 membrane at break is about eight-fold as great as that of PVDF membrane. Contact angle of F2.4 microporous membrane to water (86.6 +/- 0.51degrees) was also larger than that of PVDF mernbrane (80.0 +/- 0.78degrees). MD experiment was carried out using a direct contact membrane distillation (DCMD) configuration as final test to permeate performance of resultant microporous membrane.
Resumo:
An asymmetric hydrophobic microporous membrane from the copolymer of tetrafluoroethylene and vinyliden fluoride (F2.4) has been fabricated by phase inversion process. Some characteristics, such as mechanical properties and hydrophobicity, have been examined and compared with polyvinylidenefluoride (PVDF) membrane. Experimental data exhibit F2.4 membrane excellent mechanical properties and hydrophobicity. F2.4 microporous membrane was approximately 6-8 times as high as PVDF membrane in stretching strain and extension ratio at break, and contact angle to distilled water of the fore (88.5degrees) was larger than the latter (80.0degrees), too. The results from membrane distillation (MD) process were well agreed with the fundamental laws of membrane distillation.
Resumo:
Preparation of poly(vinylidene fluoride-co-hexafluoro propylene) (F2.6) flat-sheet asymmetric porous membrane has been studied for the first time. Factors affecting F2.6 membrane pore structure and permeate performance, such as macromolecule pore formers (polyethylene glycol-400, 1000, 1540, 2000 and 6000), the small molecule former (glycerol), swelling agent (trimethyl phosphate) in casting solution, precipitating bath component and temperature, exposure time and ambient humidity, were investigated in detail. Average pore radius and porosity were used to characterize F2.6 membrane structure, and respectively, determined by ultrafiltration and gravimetric method for the wet membrane. Morphology of the resultant membranes was observed by scanning electronic microscopy (SEM). Final test on permeate performance of F2.6 porous membrane was carried out by a direct contact membrane distillation (DCMD) setup. The experimental F2.6 membrane exhibits a higher distilled flux than PVDF membrane under the same operational situations. The determination of contact angle to distilled water also reveals higher hydrophobic nature than that of PVDF membrane.
Resumo:
We study the nature of biomolecular binding. We found that in general there exists several thermodynamic phases: a native binding phase, a non-native phase, and a glass or local trapping phase. The quantitative optimal criterion for the binding specificity is found to be the maximization of the ratio of the binding transition temperature versus the trapping transition temperature, or equivalently the ratio of the energy gap of binding between the native state and the average non-native states versus the dispersion or variance of the non-native states. This leads to a funneled binding energy landscape.
Resumo:
The sodium polyaluminates were synthesized by a high temperature solid state method and the luminescence of Eu2+ in the sodium polyaluminates was studied. The results show that the structure of the system Na1+xMgxAl11-xO17 from x=0.1 to x=1.0 belongs to Na-beta-alumina and the structure of the system Na1.67-2xBaxMg0.67Al10.33O17 changes at about x equal to 0.30, when x is smaller than 0.30 the system forms the solid solution structure of Na-beta-alumina, when x is larger than 0.30 the system becomes the ordered structure of Ba-beta-alumina, correspondingly the emission peak position and the relative emission intensity of Eu2+ change with the changes of composition and structure of the system. There exist two kinds of the luminescent centers of high and low energies of Eu2+ in the matrix of Na-beta-alumina structure. New phosphor with Ba-beta-alumina structure, Na0.67Ba0.50Mg0.67Al10.33O17:Eu2+, was obtained.
Resumo:
A surface diffusion method was proposed and applied to prepare blue phosphor BaMgAl10O17:Eu2+. The results show that, compared with the direct synthesis method by common high temperature solid state, the concentration of Eu2+ in the phosphor BaMgAl10O17:Eu2+ prepared by the surface diffusion method can be greatly reduced owing to the activator Eu2+ ions distributed mainly over the surface of the phosphor. It is possible to reduce the cost of this kind of the luminescent materials with the aid of the surface diffusion method.
Resumo:
Using two different glutathione derivatives as hapten, we have prepared two abzymes, which display glutathione peroxidase (GPX) activity. Their GPX activities are 0.2 and 1.6 times that of natural GPX from rabbit liver, respectively. Selenium content analysis indicates that the activity difference between the two abzymes is possibly attributed to the conformation difference of the abzymes.
Resumo:
A selenium-containing catalytic antibody (Se-4A4), prepared by converting reactive serine residues of a monoclonal antibody (4A4) raised against a GSH derivative into selenocysteines, acts as a mimic of cytosolic glutathione peroxidase (cGPX). To clarify the mechanism of action of this catalytic antibody, detailed studies on kinetic behaviour and biological activity were carried out. A rate of acceleration (k(cat)/K-m/k(uncat)) 10(7)-fold that of the uncatalytic reaction is observed. Under similar conditions, the turnover number (k(cat)) of Se-4A4 is 42% of that of the natural rabbit liver cGPX. The Se-4A4 reaction involves a Ping Pong mechanism, which is the same as that of the natural cGPX. The selenocysteine residue is located in the binding site of the antibody and is shown to be crucial for this activity. Of the thiol compounds tested, only GSH is able to serve as substrate for Se-4A4. It was demonstrated, using the free-radical-damage system (hypoxanthine/xanthine oxidase) of cardiac mitochondria, that Se-4A4 can protect mitochondria from free-radical damage at least 10(4)-fold more effectively than the natural cGPX.
Resumo:
A novel organotin complex, EtPhSnCl(2) . 2HOC(10)H(6)CH = NC6H1OCH3 was synthesized, and its crystal structure was determined by X-ray diffraction method. The crystal is triclinic, belonging to space group,
with unit cell parameters a = 1.150 8(5) nm, b = 1. 153 1(5) gm, c = 1. 004 6 (3) nm, alpha = 94. 15 (3)degrees, beta = 115.47 (3)degrees, r = 85. 94 (4)degrees, V = 1199 7(1) nm(3), Z=2, D-c=1.68 g/cm(3), mu=13. 20 cm(-1), F(000)=618 for 4 131 reflections tions. R=0. 047, R(w)=0. 047. The ligand coordinates to tin atom via phenolic oxygen atom. The complex has a distored trigonal bipyramidal structure, the phenolic oxygen atom of the ligand and one of two chlorine atoms occupy the axial position. The distance between noncoodinated nitrogen atom with phenolic oxygen atom is 0. 257 4 nm, which indicates that the intramolecular hydrogen bond of Schiff base ligand is retained in the complex.
Resumo:
The thiol group of glutathione (GSH) reacts specifically with 2,4-di-ni-trochlorobenzene to give S-substituted dinitrophenyl glutathione (GSH-S-DNP); two carboxyl groups of GSH-S-DNP were further esterified by n-butanol to produce the hapten, multisubstrate analog GSH-S-DNP Butyl Ester (GSH-S-DNP BE). The primary structure of the hapten was characterized by the free. amino group analysis, H-1 NMR, IR determinations and the elemental analysis. The hapten was then conjugated to bovine serum albumin (BSA) in the presence of glutaraldehyde. The reaction mixture was purified by Ultrogel AcA54 colum chromatography to give the antigen. On an average, 25 haptens were bound to each BSA molecule. Electrophoresis analysis showed that the average molecular weight of the antigen was 87 KD. CD spectrum showed that the a-helix content of the antigen increased.
Resumo:
The dynamics of phase separation in a binary polymer blend of poly(vinyl acetate) with poly(methyl methacrylate) was investigated by using a time-resolved light-scattering technique. In the later stages of spinodal decomposition, a simple dynamic scaling law was found for the scattering function S(q, t)(S(q, t) approximately I(q, t)): S(q, t)q(m)-3 S approximately (q/q(m)). The scaling function determined experimentally was in good agreement with that predicted by Furukawa, S approximately (X) approximately X2/(3 + X8) for critical concentration, and approximately in agreement with that predicted by Furukawa, S approximately (X) approximately X2/(3 + X6) for non-critical mixtures. The light-scattering invariant shows that the later stages of the spinodal decomposition were undergoing domain ripening.
Resumo:
An analysis of the water level and current data taken in Qiongzhou Strait in the South China Sea (SCS) over the last 37 years (1963 to 1999) was made to examine the characteristics of tidal waves and residual flow through the strait and their roles in the seasonal variation of the SCS circulation. The observations reveal that Qiongzhou Strait is an area where opposing tidal waves interact and a source of water transport to the Gulf of Beibu (Gulf of Tonkin), SCS. A year-round westward mean flow with a maximum speed of 10-40 cm s(-1) is found in Qiongzhou Strait. This accounts for water transport of 0.2-0.4 Sv and 0.1-0.2 Sv into the Gulf of Beibu in winter-spring and summer-autumn, respectively. The outflow from Qiongzhou Strait may cause up to 44% of the gulf water to be refreshed each season, suggesting that it has a significant impact on the seasonal circulation in the Gulf of Beibu. This finding is in contrast to our current understanding that the seasonal circulation patterns in the South China Sea are primarily driven by seasonal winds. Several numerical experiments were conducted to examine the physical mechanisms responsible for the formation of the westward mean flow in Qiongzhou Strait. The model provides a reasonable simulation of semidiurnal and diurnal tidal waves in the strait and the predicted residual flow generally agrees with the observed mean flow. An analysis of the momentum equations indicates that the strong westward flow is driven mainly by tidal rectification over variable bottom topography. Both observations and modeling suggest that the coastal physical processes associated with tidal rectification and buoyancy input must be taken into account when the mass balance of the SCS circulation is investigated, especially for the regional circulation in the Gulf of Beibu.
Resumo:
以木榄(Bruguiera gymnorriza)、白骨壤(Avicennia marina)、桐花树(Aegiceras corniculata)、秋茄(Kandelia candel)和海漆(Excoecaria agallocha)为对象,以光合作用对环境因子的响应为主线,建立了从叶片水平到群体冠层水平上的光合产量模型,探讨了从器官、个体到群体的光合产量对环境因子响应的定量关系。 将Farquhar提出的单叶片光合作用生理生化模型与气孔导度B-B模型相结合,建立了光合作用-气孔导度耦合模型。模型模拟结果与实际测量结果具有较好的一致性。在温度为25.0℃,光合有效辐射为1000μmol•m-2s-1 的条件下,当外部CO2浓度倍增到720μmol•mol-1时,白骨壤、木榄、桐花树、秋茄、海漆的光合速率分别提高22.56%,17.13%,18.43%,18.63%和18.41%。在大气CO2浓度和光合有效辐射通量密度不变的条件下,光合作用速率对温度的响应呈单峰型曲线,即有一个最适温度,5种红树植物的最适温度值均为26.5℃左右。大气CO2浓度和温度固定不变(分别为350μmol•mol-1和25.0 ℃)时,光合作用对光合有效辐射的响应符合Michaelis-Menten反应曲线,模型在PAR<1800μmol•m-2s-1时模拟精度较高(P<0.01)。 在典型晴天条件下,5种红树植物的光合速率日变化都出现两个极大值(分别在11时和15时左右),中午前后光合速率较低,模型模拟光合速率日变化与实测数值日变化趋势一致。本模型能较好地模拟5种红树植物光合产量以及对环境因子的响应,模拟预测精度较高(P<0.01)。 以Ross和Nilson叶倾角分布模型为基础,分别建立了直接辐射和散射辐射在冠层内传输的子模型。冠层内的消光系数均有明显的日变化,且上午8时之前和下午16时之后随时间变化较大。在典型晴天条件下,单位土地面积日合成干物质总量(折合为CH2O)白骨壤为15.840g•m-2d-1,对于木榄、桐花树、秋茄、海漆其相应的值分别为 22.254 g•m-2d-1, 23.610 g•m-2d-1,24.525 g•m-2d-1和25.996 g•m-2d-1 。
Resumo:
六十年代产生的系统生态学,在生态系统研究中使得数学模型至今都是一个必不可少的有效工具,建立数学模型已成为生态学中研究的热点。文章运用概率统计、时序分析手段及灰色系统理论,对胶州湾生态系统调查的历史资料进行初步分析,取得如下成果。1. 建立了非生物环境因子的八个静态统计模型,并分析了它们之间的相关关系,从定性、定量的角度对胶州湾非生物环境因子相互关系进行了研究,并结合实际情况对数学模型进行了解释。2. 根据历史资料及前人研究成果,把胶州湾生态系统划分为:浮游动物、浮游动物食性鱼类、植食性鱼类、底栖生物、底栖生物食性鱼类、肉食性鱼类六个子系统,并把有机质及浮游植物(初级生产力)作为系统的输入,运用灰关联度方法对子系统与生物及非生物环境因子的关系进行定量分析,排列出影响各子系统生物量变化的非生物环境因素的主次顺序,建立了相应的GM(1,N)模型,并对模型进行了残差检验,模型能较好的反映实际情况。预测了各子系统的发展特性,并结合实际情况提出了各类渔业资源管理的具体指标值,对优化子系统提供了具体参数。3. 根据胶州湾的实际情况,提出了新的数学模型 - 差分摆动模型及其建立方法。模型的意义在于可量化任意几个有关因子的数量关系,并对未能考虑到的因子,甚至一直未能被人们认识到的所有因子对这种生物作用的信息量进行量化,把生态系统中生物与非生物环境因子相互作用通过方程联系起来,并在论文中得到了验证。4. 根据灰色系统分析方法,对胶州湾生态系统进行了动态分析,建立了生态系统的量化动态模型,利用劳斯判断准则及根平面法,分析了系统的发展稳定状态,发现胶州湾生态系统周年内处于不稳定的发展状态。总之,论文运用各种数学手段从系统的角度来分析生态系统中各环境因子之间关系,并用数学模型把这种关系定量地表示出来,利用胶州湾生态系统现有资料,对胶州湾生态系统从系统的角度进行综合分析,为科学管理与合理开发胶州湾生物资源、优化胶州湾生态系统提供了意义的参考意见。