959 resultados para Fractional Navier-Stokes Equation, Separation of Variables, Adomian Decomposition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes preliminary work on the generation of synthesis gas from water electrolysis using graphite electrodes without the separation of the generated gases. This is an innovative process, that has no similar work been done earlier. Preliminary tests allowed to establish correlations between the applied current to the electrolyser and flow rate and composition of the generated syngas, as well as a characterisation of generated carbon nanoparticles. The obtained syngas can further be used to produce synthetic liquid fuels, for example, methane, methanol or DME (dimethyl ether) in a catalytic reactor, in further stages of a present ongoing project, using the ELECTROFUEL® concept. The main competitive advantage of this project lies in the built-in of an innovative technology product, from RE (renewable energy) power in remote locations, for example, islands, villages in mountains as an alternative for energy storage for mobility constraints.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do Grau de Doutor em Bioquímica pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A chromatographic separation of active ingredients of Combivir, Epivir, Kaletra, Norvir, Prezista, Retrovir, Trivizir, Valcyte, and Viramune is performed on thin layer chromatography. The spectra of these nine drugs were recorded using the Fourier transform infrared spectroscopy. This information is then analyzed by means of the cosine correlation. The comparison of the infrared spectra in the perspective of the adopted similarity measure is possible to visualize with present day computer tools, and the emerging clusters provide additional information about the similarities of the investigated set of complex drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of high spatial resolution airborne and spaceborne sensors has improved the capability of ground-based data collection in the fields of agriculture, geography, geology, mineral identification, detection [2, 3], and classification [4–8]. The signal read by the sensor from a given spatial element of resolution and at a given spectral band is a mixing of components originated by the constituent substances, termed endmembers, located at that element of resolution. This chapter addresses hyperspectral unmixing, which is the decomposition of the pixel spectra into a collection of constituent spectra, or spectral signatures, and their corresponding fractional abundances indicating the proportion of each endmember present in the pixel [9, 10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. The linear mixing model holds when the mixing scale is macroscopic [13]. The nonlinear model holds when the mixing scale is microscopic (i.e., intimate mixtures) [14, 15]. The linear model assumes negligible interaction among distinct endmembers [16, 17]. The nonlinear model assumes that incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [18]. Under the linear mixing model and assuming that the number of endmembers and their spectral signatures are known, hyperspectral unmixing is a linear problem, which can be addressed, for example, under the maximum likelihood setup [19], the constrained least-squares approach [20], the spectral signature matching [21], the spectral angle mapper [22], and the subspace projection methods [20, 23, 24]. Orthogonal subspace projection [23] reduces the data dimensionality, suppresses undesired spectral signatures, and detects the presence of a spectral signature of interest. The basic concept is to project each pixel onto a subspace that is orthogonal to the undesired signatures. As shown in Settle [19], the orthogonal subspace projection technique is equivalent to the maximum likelihood estimator. This projection technique was extended by three unconstrained least-squares approaches [24] (signature space orthogonal projection, oblique subspace projection, target signature space orthogonal projection). Other works using maximum a posteriori probability (MAP) framework [25] and projection pursuit [26, 27] have also been applied to hyperspectral data. In most cases the number of endmembers and their signatures are not known. Independent component analysis (ICA) is an unsupervised source separation process that has been applied with success to blind source separation, to feature extraction, and to unsupervised recognition [28, 29]. ICA consists in finding a linear decomposition of observed data yielding statistically independent components. Given that hyperspectral data are, in given circumstances, linear mixtures, ICA comes to mind as a possible tool to unmix this class of data. In fact, the application of ICA to hyperspectral data has been proposed in reference 30, where endmember signatures are treated as sources and the mixing matrix is composed by the abundance fractions, and in references 9, 25, and 31–38, where sources are the abundance fractions of each endmember. In the first approach, we face two problems: (1) The number of samples are limited to the number of channels and (2) the process of pixel selection, playing the role of mixed sources, is not straightforward. In the second approach, ICA is based on the assumption of mutually independent sources, which is not the case of hyperspectral data, since the sum of the abundance fractions is constant, implying dependence among abundances. This dependence compromises ICA applicability to hyperspectral images. In addition, hyperspectral data are immersed in noise, which degrades the ICA performance. IFA [39] was introduced as a method for recovering independent hidden sources from their observed noisy mixtures. IFA implements two steps. First, source densities and noise covariance are estimated from the observed data by maximum likelihood. Second, sources are reconstructed by an optimal nonlinear estimator. Although IFA is a well-suited technique to unmix independent sources under noisy observations, the dependence among abundance fractions in hyperspectral imagery compromises, as in the ICA case, the IFA performance. Considering the linear mixing model, hyperspectral observations are in a simplex whose vertices correspond to the endmembers. Several approaches [40–43] have exploited this geometric feature of hyperspectral mixtures [42]. Minimum volume transform (MVT) algorithm [43] determines the simplex of minimum volume containing the data. The MVT-type approaches are complex from the computational point of view. Usually, these algorithms first find the convex hull defined by the observed data and then fit a minimum volume simplex to it. Aiming at a lower computational complexity, some algorithms such as the vertex component analysis (VCA) [44], the pixel purity index (PPI) [42], and the N-FINDR [45] still find the minimum volume simplex containing the data cloud, but they assume the presence in the data of at least one pure pixel of each endmember. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. Hyperspectral sensors collects spatial images over many narrow contiguous bands, yielding large amounts of data. For this reason, very often, the processing of hyperspectral data, included unmixing, is preceded by a dimensionality reduction step to reduce computational complexity and to improve the signal-to-noise ratio (SNR). Principal component analysis (PCA) [46], maximum noise fraction (MNF) [47], and singular value decomposition (SVD) [48] are three well-known projection techniques widely used in remote sensing in general and in unmixing in particular. The newly introduced method [49] exploits the structure of hyperspectral mixtures, namely the fact that spectral vectors are nonnegative. The computational complexity associated with these techniques is an obstacle to real-time implementations. To overcome this problem, band selection [50] and non-statistical [51] algorithms have been introduced. This chapter addresses hyperspectral data source dependence and its impact on ICA and IFA performances. The study consider simulated and real data and is based on mutual information minimization. Hyperspectral observations are described by a generative model. This model takes into account the degradation mechanisms normally found in hyperspectral applications—namely, signature variability [52–54], abundance constraints, topography modulation, and system noise. The computation of mutual information is based on fitting mixtures of Gaussians (MOG) to data. The MOG parameters (number of components, means, covariances, and weights) are inferred using the minimum description length (MDL) based algorithm [55]. We study the behavior of the mutual information as a function of the unmixing matrix. The conclusion is that the unmixing matrix minimizing the mutual information might be very far from the true one. Nevertheless, some abundance fractions might be well separated, mainly in the presence of strong signature variability, a large number of endmembers, and high SNR. We end this chapter by sketching a new methodology to blindly unmix hyperspectral data, where abundance fractions are modeled as a mixture of Dirichlet sources. This model enforces positivity and constant sum sources (full additivity) constraints. The mixing matrix is inferred by an expectation-maximization (EM)-type algorithm. This approach is in the vein of references 39 and 56, replacing independent sources represented by MOG with mixture of Dirichlet sources. Compared with the geometric-based approaches, the advantage of this model is that there is no need to have pure pixels in the observations. The chapter is organized as follows. Section 6.2 presents a spectral radiance model and formulates the spectral unmixing as a linear problem accounting for abundance constraints, signature variability, topography modulation, and system noise. Section 6.3 presents a brief resume of ICA and IFA algorithms. Section 6.4 illustrates the performance of IFA and of some well-known ICA algorithms with experimental data. Section 6.5 studies the ICA and IFA limitations in unmixing hyperspectral data. Section 6.6 presents results of ICA based on real data. Section 6.7 describes the new blind unmixing scheme and some illustrative examples. Section 6.8 concludes with some remarks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta dissertação descreve o desenvolvimento e avaliação de um procedimento de \Numerical Site Calibration" (NSC) para um Parque Eólico, situado a sul de Portugal, usando Dinâmica de Fluídos Computacional (CFD). O NSC encontra-se baseado no \Site Calibration" (SC), sendo este um método de medição padronizado pela Comissão Electrónica Internacional através da norma IEC 61400. Este método tem a finalidade de quantificar e reduzir os efeitos provocados pelo terreno e por possíveis obstáculos, na medição do desempenho energético das turbinas eólicas. Assim, no SC são realizadas medições em dois pontos, no mastro referência e no local da turbina (mastro temporário). No entanto, em Parques Eólicos já construídos, este método não é aplicável visto ser necessária a instalação de um mastro de medição no local da turbina e, por conseguinte, o procedimento adequado para estas circunstâncias é o NSC. O desenvolvimento deste método é feito por um código CFD, desenvolvido por uma equipa de investigação do Instituto Superior de Engenharia do Porto, designado de WINDIETM, usado extensivamente pela empresa Megajoule Inovação, Lda em aplicações de energia eólica em todo mundo. Este código é uma ferramenta para simulação de escoamentos tridimensionais em terrenos complexos. As simulações do escoamento são realizadas no regime transiente utilizando as equações de Navier-Stokes médias de Reynolds com aproximação de Bussinesq e o modelo de turbulência TKE 1.5. As condições fronteira são provenientes dos resultados de uma simulação realizada com Weather Research and Forecasting, WRF. Estas simulações dividem-se em dois grupos, um dos conjuntos de simulações utiliza o esquema convectivo Upwind e o outro utiliza o esquema convectivo de 4aordem. A análise deste método é realizada a partir da comparação dos dados obtidos nas simulações realizadas no código WINDIETM e a coleta de dados medidos durante o processo SC. Em suma, conclui-se que o WINDIETM e as suas configurações reproduzem bons resultados de calibração, ja que produzem erros globais na ordem de dois pontos percentuais em relação ao SC realizado para o mesmo local em estudo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A presente tese tem como principal objetivo a comparação entre dois software de CFD (Computer Fluid Dynamics) na simulação de escoamentos atmosféricos com vista à sua aplicação ao estudo e caracterização de parques eólicos. O software em causa são o OpenFOAM (Open Field Operation and Manipulation) - freeware open source genérico - e o Windie, ferramenta especializada no estudo de parques eólicos. Para este estudo foi usada a topografia circundante a um parque eólico situado na Grécia, do qual dispúnhamos de resultados de uma campanha de medições efetuada previamente. Para este _m foram usados procedimentos e ferramentas complementares ao Open-FOAM, desenvolvidas por da Silva Azevedo (2013) adequados para a realização do pré-processamento, extração de dados e pós-processamento, aplicados na simulação do caso pratico. As condições de cálculo usadas neste trabalho limitaram-se às usadas na simulação de escoamentos previamente simulados pelo software Windie: condições de escoamento turbulento, estacionário, incompressível e em regime não estratificado, com o recurso ao modelo de turbulência RaNS (Reynolds-averaged Navier-Stokes ) k - E atmosférico. Os resultados de ambas as simulações - OpenFOAM e Windie - foram comparados com resultados de uma campanha de medições, através dos valores de speed-up e intensidade turbulenta nas posições dos anemómetros.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objetivo – O objetivo deste trabalho é analisar e medir os determinantes da e-lealdade de um cliente no comércio eletrónico em Portugal. Metodologia – Foi realizado um estudo quantitativo empírico confirmatório e explicativo, a partir da identificação de um modelo teórico, suportado pelo levantamento bibliográfico sobre variáveis latentes, suscetível de investigar as relações entre os determinantes da e-lealdade. Os dados foram recolhidos através de um instrumento de medida, disponível online, o qual, permitiu obter uma amostra válida de 394 respondentes. As hipóteses foram testadas através de um modelo de equações estruturais. Resultados e conclusões – Estudaram-se e comprovaram-se a maioria das relações previstas e hipóteses, nomeadamente, a relação positiva das várias dimensões da e-confiança, e-satisfação e da e-qualidade de serviço na e-lealdade. A e-satisfação e a e-qualidade de serviço apresentam, também, um contributo interessante para a e-confiança que os consumidores têm nos produtos/serviços online. Quanto à e-satisfação dos consumidores foi possível verificar que a mesma apresenta uma variação, de acordo com a e-qualidade de serviço e a e-confiança, por parte dos consumidores online. Foi cumprida a validade convergente e discriminante das escalas de medida e a boa qualidade psicométrica das variáveis. Estas evidenciaram bons níveis de correlação e capacidades preditivas. Limitações/implicações – Os resultados obtidos precisam ser analisados com toda a precaução, não podendo ser objeto de generalizações, face ao uso de uma amostra de conveniência. O facto de os inquiridos avaliarem um website que estão já familiarizados pode constituir uma outra limitação. A ausência de estudos nacionais homólogos teve algumas implicações na discussão dos resultados. Originalidade/valor – O principal contributo deste estudo é constituir o primeiro realizado em Portugal, à data, onde se investigou e estimou um modelo proposto sobre os determinantes e antecedentes da e-lealdade no comércio eletrónico.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eur. J. Biochem. 270, 3904–3915 (2003) doi:10.1046/j.1432-1033.2003.03772.x

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Arte e Ciência do Vidro

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phenolic acids are aromatic secondary plant metabolites, widely spread throughout the plant kingdom. Due to their biological and pharmacological properties, they have been playing an important role in phytotherapy and consequently techniques for their separation and purification are in need. This thesis aims at exploring new sustainable separation processes based on ionic liquids (ILs) in the extraction of biologically active phenolic acids. For that purpose, three phenolic acids with similar chemical structures were selected: cinnamic acid, p-coumaric acid and caffeic acid. In the last years, it has been shown that ionic liquids-based aqueous biphasic systems (ABSs) are valid alternatives for the extraction, recovery and purification of biomolecules when compared to conventional ABS or extractions carried out with organic solvents. In particular, cholinium-based ILs represent a clear step towards a greener chemistry, while providing means for the implementation of efficient techniques for the separation and purification of biomolecules. In this work, ABSs were implemented using cholinium carboxylate ILs using either high charge density inorganic salt (K3PO4) or polyethylene glycol (PEG) to promote the phase separation of aqueous solutions containing three different phenolic acids. These systems allow for the evaluation of effect of chemical structure of the anion on the extraction efficiency. Only one imidazolium-based IL was used in order to establish the effect of the cation chemical structure. The selective extraction of one single acid was also researched. Overall, it was observed that phenolic acids display very complex behaviours in aqueous solutions, from dimerization to polymerization and also hetero-association are quite frequent phenomena, depending on the pH conditions. These phenomena greatly hinder the correct quantification of these acids in solution.