838 resultados para Feature Vector
Resumo:
Singular perturbations problems in dimension three which are approximations of discontinuous vector fields are studied in this paper. The main result states that the regularization process developed by Sotomayor and Teixeira produces a singular problem for which the discontinuous set is a center manifold. Moreover, the definition of' sliding vector field coincides with the reduced problem of the corresponding singular problem for a class of vector fields.
Resumo:
For many vector-borne organisms, dogs can be used as sentinels to estimate the risk of human infection. The objective of this study was to use dogs as sentinels for multiple vector-borne organisms in order to evaluate the potential for human infection with these agents in southeastern Brazil. Blood from 198 sick dogs with clinicopathological abnormalities consistent with tick-borne infections were selected at the São Paulo State University Veterinary Teaching Hospital in Botucatu and tested for DNA and/or antibodies against specific vector-borne pathogens. At least one organism was detected in 88% of the dogs, and Ehrlichia canis DNA was amplified from 78% of the blood samples. Bartonella spp. seroreactivity was found in 3.6%. Leishmania chagasi antibodies were detected in 1% of the dogs. There was no serological or polymerase chain reaction evidence of infection with Anaplasma phagocytophilum, Borrelia burgdorferi, Ehrlichia chaffeensis, Ehrlichia ewingii, and Rickettsia rickettsii. The full E. canis 16S rRNA gene sequence of one of the Brazilian strains obtained in this study was identical to the causative agent of human ehrlichiosis in Venezuela. Ehrlichia canis may pose a human health hazard and may be undiagnosed in southeastern Brazil, whereas exposure to the other organisms examined in this study is presumably infrequent.
Resumo:
We study the dynamics of a class of reversible vector fields having eigenvalues (0, alphai, -alphai) around their symmetric equilibria. We give a complete list of all normal forms for such vector fields, their versal unfoldings, and the corresponding bifurcation diagrams of the codimensional-one case. We also obtain some important conclusions on the existence of homoclinic and heteroclinic orbits, invariant tori and symmetric periodic orbits.
Resumo:
The sols produced by admixture of ZrOCl2 acidified solutions to hot H2SO4 aqueous solutions were studied to clarify the effects of Cl- and SO42- ions on the kinetic stability of nanoparticles and to obtain some new evidence concerning the mechanism of a thermoreversible sol-gel transition observed in this system. The study of suspensions prepared with different molar ratios R-S = [Zr]/[SO42-] and R-Cl = [Zr]/[Cl-] revealed domains of composition of formation of thermoreversible gels, thermostable sols, and powder precipitation. The effects of R-S and R-Cl on the structural features of nanoparticles and on the particle solution interface were systematically analyzed for samples of thermoreversible and thermostable sol domains. Small-angle X-ray scattering measurements revealed the presence of small fractal aggregates in all samples of thermoreversible domains, while compact packing aggregates of primary particles are present in the thermostable sol. Extended X-ray absorption fine structure and elemental chemical analysis revealed that irrespective of the nominal value of R-S and R-Cl all studied samples of the thermoreversible domain are constituted by a well-defined compound possessing an inner core made of hydroxyl and oxo groups bridging together zirconium atoms surrounded on the surface by complexing sulfate ligands. zeta potentials of powders extracted by freeze-drying from the thermoreversible gel revealed a point of surface charge inversion attributed to the specific adsorption of SO42- ion. Thermoreversible gel formation is rationalized by considering the effect of the specific adsorption on the electrical double-layer repulsion together with the temperature dependency of the physical chemical properties of ions in solution.
Resumo:
A comparative phytochemical study between pericarps of Iryanthera lancifolia and Virola surinamensis showed that the first one contains a new pair of epimeric 2-alkenyl-gamma-lactones, besides an aryltetralinic lignan and one tocotrienol, while the second species contains the lignans, galgravin and veraguensin, seven juruenolides: juruenolides C, D, F, G and epi-juruenolides D, F, G, together with three pairs of epimeric aliphatic 2-alkenyl-gamma-lactones. Juruenolide F, epi-juruenolides D, F, G and the 2-alkenyl-gamma-lactones are new natural compounds. (C) 1998 Elsevier B.V. Ltd. All rights reserved.
Resumo:
As a new modeling method, support vector regression (SVR) has been regarded as the state-of-the-art technique for regression and approximation. In this study, the SVR models had been introduced and developed to predict body and carcass-related characteristics of 2 strains of broiler chicken. To evaluate the prediction ability of SVR models, we compared their performance with that of neural network (NN) models. Evaluation of the prediction accuracy of models was based on the R-2, MS error, and bias. The variables of interest as model output were BW, empty BW, carcass, breast, drumstick, thigh, and wing weight in 2 strains of Ross and Cobb chickens based on intake dietary nutrients, including ME (kcal/bird per week), CP, TSAA, and Lys, all as grams per bird per week. A data set composed of 64 measurements taken from each strain were used for this analysis, where 44 data lines were used for model training, whereas the remaining 20 lines were used to test the created models. The results of this study revealed that it is possible to satisfactorily estimate the BW and carcass parts of the broiler chickens via their dietary nutrient intake. Through statistical criteria used to evaluate the performance of the SVR and NN models, the overall results demonstrate that the discussed models can be effective for accurate prediction of the body and carcass-related characteristics investigated here. However, the SVR method achieved better accuracy and generalization than the NN method. This indicates that the new data mining technique (SVR model) can be used as an alternative modeling tool for NN models. However, further reevaluation of this algorithm in the future is suggested.
Resumo:
The present review describes mainly the history of SnO2-based voltage-dependent resistors, discusses the main characteristics of these polycrystalline semiconductor systems and includes a direct comparison with traditional ZnO-based voltage-dependent resistor systems to establish the differences and similarities, giving details of the basic physical principles involved with the non-ohmic properties in both polycrystalline systems. As an overview, the text also undertakes the main difficulties involved in processing SnO2- and ZnO-based non-ohmic systems, with an evaluation of the contribution of the dopants to the electronic properties and to the final microstructure and consequently to the system's non-ohmic behavior. However, since there are at least two review texts regarding ZnO-based systems [Levinson, L. M., and Philipp, H. R. Ceramic Bulletin 1985;64:639; Clarke, D. R. Journal of American Ceramic Society 1999;82:485], the main focus of the present text is dedicated to the SnO2-based varistor systems, although the basic physical principles described in the text are universally useful in the context of dense polycrystalline devices. However, the readers must be careful of how the microstructure heterogeneity and grain-boundary chemistry are capable to interfere in the global electrical response for particular systems. New perspectives for applications, commercialization and degradation studies involving SnO2-based polycrystalline non-ohmic systems are also outlined, including recent technological developments. Finally, at the end of this review a brief section is particularly dedicated to the presentation and discussions about others emerging non-ohmic polycrystalline ceramic devices (particularly based on perovskite ceramics) which must be deeply studied in the years to come, specially because some of these systems present combined high dielectric and non-ohmic properties. From both scientific and technological point of view these perovskite systems are quite interesting. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We investigate in this paper the topological stability of pairs (omega, X), where w is a germ of an integrable 1-form and X is a germ of a vector field tangent to the foliation determined by omega.
Resumo:
We discuss the consistency of the traditional vector meson dominance (VMD) model for photons coupling to matter, with the vanishing of vector meson-meson and meson-photon mixing self-energies at q2 = 0. This vanishing of vector mixing has been demonstrated in the context of rho-omega mixing for a large class of effective theories. As a further constraint on such models, we here apply them to a study of photon-meson mixing and VMD. As an example we compare the predicted momentum dependence of one such model with a momentum-dependent version of VMD discussed by Sakurai in the 1960's. We find that it produces a result which is consistent with the traditional VMD phenomenology. We conclude that comparison with VMD phenomenology can provide a useful constraint on such models.
Resumo:
We perform a detailed analysis of the potentiality of the CERN Large Hadron Collider to study the single production of leptoquarks via pp→e±q→ leptoquark →e± q, with e± generated by the splitting of photons radiated by the protons. Working with the most general SU(2)L⊗U( 1 )Y invariant effective Lagrangian for scalar and vector leptoquarks, we analyze in detail the leptoquark signals and backgrounds that lead to a final state containing an e± and a hard jet with approximately balanced transverse momenta. Our results indicate that the LHC will be able to discover leptoquarks with masses up to 2-3 TeV, depending on their type, for Yukawa couplings of the order of the electromagnetic one.
Resumo:
We analyze the potential of the CERN Large Hadron Collider to study anomalous quartic vector-boson interactions through the production of vector-boson pairs accompanied by jets. In the framework of SU(2) L⊗U(1) Y chiral Lagrangians, we examine all effective operators of order p 4 that lead to new four-gauge-boson interactions but do not alter trilinear vertices. In our analyses, we perform the full tree-level calculation of the processes leading to two jets plus vector-boson pairs, W +W -,W ±W ±,W ±Z, or ZZ, taking properly into account the interference between the standard model and the anomalous contributions. We obtain the bounds that can be placed on the anomalous quartic interactions and we study the strategies to distinguish the possible new couplings. ©1998 The American Physical Society.