979 resultados para Fast test
Resumo:
The 9th International Test Commission Conference (ITC) took place at the Miramar Palace in San Sebastian, Spain, between the 2nd and 5th of July, 2014. The Conference was titled, “Global and Local Challenges for Best Practices in Assessment.” The International Test Commission, ITC (www.intestcom.org), is an association of national psychological associations, test commissions, publishers, and other organizations, as well as individuals who are committed to the promotion of effective testing and assessment policies and to the proper development, evaluation, and uses of educational and psychological instruments. The ITC facilitates the exchange of information among members and stimulates their cooperation on problems related to the construction, distribution, and uses of psychological and educational tests and other psychodiagnostic tools. This volume contains the abstracts of the contributions presented at the 9th International Test Commission Conference. The four themes of the Conference were closely linked to the goals of the ITC: - Challenges and Opportunities in International Assessment. - Application of New Technoloogies and New Psychometric Models in Testing. - Standards and Guidelines for Best Testing Practices. - Testing in Multilingual and Multicultural Contexts.
Resumo:
We propose to utilize the leading pulse of a petawatt class laser to create a conic plasma channel in the dense plasmas. This plasma channel could serve as a natural cone to guide the main pulse to the cone tip, as behaves similarly to the physical Au cone. We estimate that the leading pulse of a petawatt laser could create a natural cone with cone tip only about 100 mu m away from the edge of compressed core plasma. The natural cone formation should be compatible for a good uniform compression and efficient fast heating of the imploded fuel.
Resumo:
Neurons obtained directly from human somatic cells hold great promise for disease modeling and drug screening. Available protocols rely on overexpression of transcription factors using integrative vectors and are often slow, complex, and inefficient. We report a fast and efficient approach for generating induced neural cells (iNCs) directly from human hematopoietic cells using Sendai virus. Upon SOX2 and c-MYC expression, CD133-positive cord blood cells rapidly adopt a neuroepithelial morphology and exhibit high expansion capacity. Under defined neurogenic culture conditions, they express mature neuronal markers and fire spontaneous action potentials that can be modulated with neurotransmitters. SOX2 and c-MYC are also sufficient to convert peripheral blood mononuclear cells into iNCs. However, the conversion process is less efficient and resulting iNCs have limited expansion capacity and electrophysiological activity upon differentiation. Our study demonstrates rapid and efficient generation of iNCs from hematopoietic cells while underscoring the impact of target cells on conversion efficiency.
Resumo:
Este proyecto trata de abordar las transformaciones entre diferentes estándares para Test Informatizados, de manera automática, gracias a la Ingeniería dirigida por Modelos (MDE - Model Driven Engineer), para así obtener un estándar capaz de formar parte en una plataforma de ejecución de Guías de Práctica Clínica. Esto se consigue mediante la generación automática de Guías de Test, partiendo de Test Informatizados en los formatos estándar Aiken y Gift.
Resumo:
The full retarded electromagnetic force experienced by swift electrons moving parallel to planar boundaries is revisited, for both metallic and dielectric targets, with special emphasis on the consequences in electron microscopy experiments. The focus is placed on the sign of the transverse force experienced by the electron beam as a function of the impact parameter. For point probes, the force is found to be always attractive. The contribution of the induced magnetic field and the causality requirements of the target dielectric response, given by the Kramers-Kronig (K-K) relations, prove to be crucial issues at small impact parameters. For spatially extended probes, repulsive forces are predicted for close trajectories, in agreement with previous works. The force experienced by the target is also explored, with the finding that in insulators, the momentum associated to Cherenkov radiation (CR) is relevant at large impact parameters.