949 resultados para Evolutionary approach
Resumo:
This study proposes a full Bayes (FB) hierarchical modeling approach in traffic crash hotspot identification. The FB approach is able to account for all uncertainties associated with crash risk and various risk factors by estimating a posterior distribution of the site safety on which various ranking criteria could be based. Moreover, by use of hierarchical model specification, FB approach is able to flexibly take into account various heterogeneities of crash occurrence due to spatiotemporal effects on traffic safety. Using Singapore intersection crash data(1997-2006), an empirical evaluate was conducted to compare the proposed FB approach to the state-of-the-art approaches. Results show that the Bayesian hierarchical models with accommodation for site specific effect and serial correlation have better goodness-of-fit than non hierarchical models. Furthermore, all model-based approaches perform significantly better in safety ranking than the naive approach using raw crash count. The FB hierarchical models were found to significantly outperform the standard EB approach in correctly identifying hotspots.
Resumo:
Sustainability, smartness and safety are three sole components of a modern transportation system. The objective of this study is to introduce a modern transportation system in the light of a 3‘S’ approach: sustainable, smart and safe. In particular this paper studies the transportation system of Singapore to address how this system is progressing in this three-pronged approach towards a modern transportation system. While sustainability targets environmental justice and social equity without compromising economical efficiency, smartness incorporates qualities like automated sensing, processing and decision making, and action-taking into the transportation system. Since a system cannot be viable without being safe, the safety of the modern transportation system aims minimizing crash risks of all users including motorists, motorcyclists, pedestrians, and bicyclists. Various policy implications and technology applications inside the transportation system of Singapore are discussed to illustrate a modern transportation system within the framework of the 3‘S’ model.
Resumo:
The authors present a Cause-Effect fault diagnosis model, which utilises the Root Cause Analysis approach and takes into account the technical features of a digital substation. The Dempster/Shafer evidence theory is used to integrate different types of fault information in the diagnosis model so as to implement a hierarchical, systematic and comprehensive diagnosis based on the logic relationship between the parent and child nodes such as transformer/circuit-breaker/transmission-line, and between the root and child causes. A real fault scenario is investigated in the case study to demonstrate the developed approach in diagnosing malfunction of protective relays and/or circuit breakers, miss or false alarms, and other commonly encountered faults at a modern digital substation.
Resumo:
To date, a molecular phylogenetic approach has not been used to investigate the evolutionary structure of Trogoderma and closely related genera. Using two mitochondrial genes, Cytochrome Oxidase I and Cytochrome B, and the nuclear gene, 18S, the reported polyphyletic positioning of Trogoderma was examined. Paraphyly in Trogoderma was observed, with one Australian Trogoderma species reconciled as sister to all Dermestidae and the Anthrenocerus genus deeply nested within the Australian Trogoderma clade. In addition, time to most recent common ancestor for a number of Dermestidae was calculated. Based on these estimations, the Dermestidae origin exceeded 175 million years, placing the origins of this family in Pangaea.
Resumo:
The favourable scaffold for bone tissue engineering should have desired characteristic features, such as adequate mechanical strength and three-dimensional open porosity, which guarantee a suitable environment for tissue regeneration. In fact, the design of such complex structures like bone scaffolds is a challenge for investigators. One of the aims is to achieve the best possible mechanical strength-degradation rate ratio. In this paper we attempt to use numerical modelling to evaluate material properties for designing bone tissue engineering scaffold fabricated via the fused deposition modelling technique. For our studies the standard genetic algorithm was used, which is an efficient method of discrete optimization. For the fused deposition modelling scaffold, each individual strut is scrutinized for its role in the architecture and structural support it provides for the scaffold, and its contribution to the overall scaffold was studied. The goal of the study was to create a numerical tool that could help to acquire the desired behaviour of tissue engineered scaffolds and our results showed that this could be achieved efficiently by using different materials for individual struts. To represent a great number of ways in which scaffold mechanical function loss could proceed, the exemplary set of different desirable scaffold stiffness loss function was chosen. © 2012 John Wiley & Sons, Ltd.
Resumo:
This paper focuses on the importance of foregrounding an emphasis on the development of historical thinking in the implementation of the Australian Curriculum: History as a way of making the study of history meaningful for their students. In doing so, it argues that teachers need to take up the opportunity to situate the study of Asia as a significant component of the curriculum’s ‘Australia in a world history approach’. In the discussion on the significance of historical thinking, the paper specifically addresses those seven historical concepts articulated in the new history curriculum by drawing from the international scholarship in the field of history education on the ways in which children and adolescents think about historical content and concepts.
Resumo:
Recently, Software as a Service (SaaS) in Cloud computing, has become more and more significant among software users and providers. To offer a SaaS with flexible functions at a low cost, SaaS providers have focused on the decomposition of the SaaS functionalities, or known as composite SaaS. This approach has introduced new challenges in SaaS resource management in data centres. One of the challenges is managing the resources allocated to the composite SaaS. Due to the dynamic environment of a Cloud data centre, resources that have been initially allocated to SaaS components may be overloaded or wasted. As such, reconfiguration for the components’ placement is triggered to maintain the performance of the composite SaaS. However, existing approaches often ignore the communication or dependencies between SaaS components in their implementation. In a composite SaaS, it is important to include these elements, as they will directly affect the performance of the SaaS. This paper will propose a Grouping Genetic Algorithm (GGA) for multiple composite SaaS application component clustering in Cloud computing that will address this gap. To the best of our knowledge, this is the first attempt to handle multiple composite SaaS reconfiguration placement in a dynamic Cloud environment. The experimental results demonstrate the feasibility and the scalability of the GGA.
Resumo:
Network RTK (Real-Time Kinematic) is a technology that is based on GPS (Global Positioning System) or more generally on GNSS (Global Navigation Satellite System) observations to achieve centimeter-level accuracy positioning in real time. It is enabled by a network of Continuously Operating Reference Stations (CORS). CORS placement is an important problem in the design of network RTK as it directly affects not only the installation and running costs of the network RTK, but also the Quality of Service (QoS) provided by the network RTK. In our preliminary research on the CORS placement, we proposed a polynomial heuristic algorithm for a so-called location-based CORS placement problem. From a computational point of view, the location-based CORS placement is a largescale combinatorial optimization problem. Thus, although the heuristic algorithm is efficient in computation time it may not be able to find an optimal or near optimal solution. Aiming at improving the quality of solutions, this paper proposes a repairing genetic algorithm (RGA) for the location-based CORS placement problem. The RGA has been implemented and compared to the heuristic algorithm by experiments. Experimental results have shown that the RGA produces better quality of solutions than the heuristic algorithm.
Resumo:
We present a formalism for the analysis of sensitivity of nuclear magnetic resonance pulse sequences to variations of pulse sequence parameters, such as radiofrequency pulses, gradient pulses or evolution delays. The formalism enables the calculation of compact, analytic expressions for the derivatives of the density matrix and the observed signal with respect to the parameters varied. The analysis is based on two constructs computed in the course of modified density-matrix simulations: the error interrogation operators and error commutators. The approach presented is consequently named the Error Commutator Formalism (ECF). It is used to evaluate the sensitivity of the density matrix to parameter variation based on the simulations carried out for the ideal parameters, obviating the need for finite-difference calculations of signal errors. The ECF analysis therefore carries a computational cost comparable to a single density-matrix or product-operator simulation. Its application is illustrated using a number of examples from basic NMR spectroscopy. We show that the strength of the ECF is its ability to provide analytic insights into the propagation of errors through pulse sequences and the behaviour of signal errors under phase cycling. Furthermore, the approach is algorithmic and easily amenable to implementation in the form of a programming code. It is envisaged that it could be incorporated into standard NMR product-operator simulation packages.
Resumo:
A composite SaaS (Software as a Service) is a software that is comprised of several software components and data components. The composite SaaS placement problem is to determine where each of the components should be deployed in a cloud computing environment such that the performance of the composite SaaS is optimal. From the computational point of view, the composite SaaS placement problem is a large-scale combinatorial optimization problem. Thus, an Iterative Cooperative Co-evolutionary Genetic Algorithm (ICCGA) was proposed. The ICCGA can find reasonable quality of solutions. However, its computation time is noticeably slow. Aiming at improving the computation time, we propose an unsynchronized Parallel Cooperative Co-evolutionary Genetic Algorithm (PCCGA) in this paper. Experimental results have shown that the PCCGA not only has quicker computation time, but also generates better quality of solutions than the ICCGA.