860 resultados para Enhanced optical transmission


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have used XUV lasers to make absolute measurements of the photoabsorption coefficient of Al at energies just below that of the L3 absorption edge at 72.7 eV. Transmission measurements at photon energies of 53.7 and 63.3 eV have been made using Ne-like Ni and Ge XUV lasers. The XUV laser output was recorded in first and second orders using a flat-field spectrometer. Al foils with steps of various thicknesses were placed over the first order diffracted signal, while the second order diffraction was used to monitor the beam profile at each position. The transmission data agree extremely well with the original measurements at these wavelengths made by Henke and co-workers (Henke B L, Gullikson E M and Davis J C 1993 At. Data Nucl. Data Tables 54 18 1), but are in conflict with subsequent measurements which are currently in common use (Gullikson E M, Denham P, Mrowka S and Underwood J H 1994 Phys. Rev. B 49 16 283). The exact values of the absorption coefficients in this region of the spectrum have significant implications for the diagnosis of the energy and intensity output of XUV lasers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A pin diode-loaded active doubly periodic flat strip FSS is shown to act as a dynamic screen. It is shown that by means of d.c. bias control, we can utilize the screen in, (1) transmission mode as a dual band electromagnetic shutter, or with the inclusion of a ground plane in reflection mode, (is (2) it dual band refection canceller. (3) an amplitude shift keying (ASK) spatial modulator. The properties of the FSS are characterized using a specially designed parallel plate waveguide simulator that permits normal incidence excitation of the FSS under test. (C) 2009 Wiley Periodicals. Inc. Microwave Opt Technol Lett 51: 2059-2061, 2009; Published online in Wiley Inter-Science (www. interscience.wiley.com). DOI 10.1002/mop.24547

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of a reflective, gold-coated long-period grating-based sensor for the measurement of chloride ions in solution is discussed. The sensor scheme is based around a long-period fiber grating (LPG)-based Michelson interferometer where the sensor was calibrated and evaluated in the laboratory using sodium chloride solutions, over a wide range of concentrations, from 0.01 to 4.00 M. The grating response creates shifts in the spectral characteristic of the interferometer, formed using the LPG and a reflective surface on the distal end of the fiber, due to the change of refracting index of the solution surrounding it. It was found that the sensitivity of the device could be enhanced over that obtained from a bare fiber by coating the LPG-based interferometer with gold nanoparticles and the results of a cross-comparison of performance were obtained and details discussed. The approach will be explored as a basis to create a portable, low-power device, developed with the potential for installation in concrete structures to determine the ingress of chloride ions, operating through monitoring the refractive index change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The overall quantum efficiency in surface plasmon (SP) enhanced Schottky barrier photodetectors is examined by considering both the external and internal yield. The external yield is considered through calculations of absorption and transmission of light in a configuration that allows reflectance minimization due to SP excitation. Following a Monte Carlo method, a procedure is presented to estimate the internal yield while taking into account the effect of elastic and inelastic scattering processes on excited carriers subsequent to photon absorption. The relative importance of internal photoemission and band-to-band contributions to the internal yield is highlighted along with the variation of the yield as a function of wavelength, metal thickness and other salient parameters of the detector. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We review the design and fabrication of thin-film composite optical waveguides (OWG) with high refractive index for sensor applications. A highly sensitive optical sensor device has been developed on the basis of thin-film, composite OWG. The thin-film OWG was deposited onto the surface of a potassium-ion-exchanged (K+) glass OWG by sputtering or spin coating (5-9 mm wide, and with tapers at both ends). By allowing an adiabatic transition of the guided light from the secondary OWG to the thin-film OWG, the electric field of the evanescent wave at the thin film was enhanced. The attenuation of the guided light in the thin film layer was small, and the guided light intensity changed sensitively with the refractive index of the cladding layer. Our experimental results demonstrate that thin-film, composite OWG gas sensors or immunosensors are much more sensitive than sensors based on other technologies. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of diffraction of an optical wave by a 2D periodic metal aperture array with square, circular, and ring apertures is solved with allowance for the finite permittivity of a metal in the optical band. The correctness of the obtained results is verified through comparison with experimental data. It is shown that the transmission coefficient can be substantially greater than the corresponding value reached in the case of diffraction by a grating in a perfectly conducting screen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical techniques toward the realization of sensitive and selective biosensing platforms have received considerable attention in recent times. Techniques based on interferometry, surface plasmon resonance, and waveguides have all proved popular, while spectroscopy in particular offers much potential. Raman spectroscopy is an information-rich technique in which the vibrational frequencies reveal much about the structure of a compound, but it is a weak process and offers poor sensitivity. In response to this problem, surface-enhanced Raman scattering (SERS) has received much attention, due to significant increases in sensitivity instigated by bringing the sample into contact with an enhancing substrate. Here we discuss a facile and rapid technique for the detection of pterins using SERS-active colloidal silver suspensions. Pterins are a family of biological compounds that are employed in nature in color pigmentation and as facilitators in metabolic pathways. In this work, small volumes of xanthopterin, isoxanthopterin, and 7,8-dihydrobiopterin have been examined while adsorbed to silver colloids. Limits of detection have been examined for both xanthopterin and isoxanthopterin using a 10-s exposure to a 12 mW 532 nm laser, which, while showing a trade-off between scan time and signal intensity, still provides the opportunity for the investigation of simultaneous detection of both pterins in solution. (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3600658]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface-enhanced Raman (SERS) spectra of deoxyadenosine and 5'-dAMP on Ag and Au surfaces showed the protonation of both compounds in the N1 position, their orientation geometry on metal surfaces, and the formation of Ag+ complexes at alkaline pH on hydroxylamine-reduced Ag colloids. Interestingly, substitution at the N9 position caused dramatic changes in the relative band intensities within the spectra of both deoxyadenosine and 5'-dAMP compared to that of simple adenine, although they continued to be dominated by adenine vibrations. Concentration-dependent spectra of 5'-dAMP were observed, which matched that of adenine at high concentrations and that of deoxyadenosine at lower concentration (

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ceria (CeO2) is a technologically important rare earth material because of its unique properties and various engineering and biological applications. A facile and rapid method has been developed to prepare ceria nanoparticles using microwave with the average size 7 nm in the presence of a set of ionic liquids based on the bis (trifluoromethylsulfonyl) imide anion and different cations of 1-alkyl-3-methyl-imidazolium. The structural features and optical properties of the nanoparticles were determined in depth with X-ray powder diffraction, transmission electron microscope, N-2 adsorption-desorption technique, dynamic light scattering (DLS) analysis, FTIR spectroscopy, Raman spectroscopy, UV-vis absorption spectroscopy, and Diffuse reflectance spectroscopy. The energy band gap measurements of nanoparticles of ceria have been carried out by UV-visible absorption spectroscopy and diffuse reflectance spectroscopy. The surface charge properties of colloidal ceria dispersions in ethylene glycol have been also studied. To the best of our knowledge, this is the first report on using this type of ionic liquids in ceria nanoparticle synthesis. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA sequences attached to Au nanoparticles via thiol linkers stand up from the surface, giving preferential enhancement of the adenine ring breathing SERS band. Non-specific binding via the nucleobases reorients the DNA, reducing this effect. This change in intensity on reorientation was utilised for label-free detection of hybridization of a molecular beacon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel Ag on TiO2 films are generated by semiconductor photocatalysis and characterized by ultraviolet-visible (UV/Vis) spectroscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM), as well as assessed for surface-enhanced Raman scattering (SERS) activity. The nature and thickness of the photodeposited Ag, and thus the degree of SERS activity, is controlled by the time of exposure of the TiO2 film to UV light. All such films exhibit the optical characteristics (λmax ≅ 390 nm) of small (<20 nm) Ag particles, although this feature becomes less prominent as the film becomes thicker. The films comprise quite large (>40 nm) Ag islands that grow and merge with increasing levels of Ag photodeposition. Tested with a benzotriazole dye probe, the films are SERS active, exhibiting activity similar to that of 6-nm-thick vapordeposited films. The Ag/TiO2 films exhibit a lower residual standard deviation (∼25%) compared with Ag vapor-deposited films (∼45%), which is, however, still unacceptable for quantitative work. The sample-to-sample variance could be reduced significantly (<7%) by spinning the film during the SERS measurement. The Ag/TiO2 films are mechanically robust and resistant to removal and damage by scratching, unlike the Ag vapor-deposited films. The Ag/TiO2 films also exhibit no obvious loss of SERS activity when stored in the dark under otherwise ambient conditions. The possible extension of this simple, effective method of producing Ag films for SERS, to metals other than Ag and to semiconductors other than TiO2, is briefly discussed. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unique microneedle arrays prepared from crosslinked polymers, which contain no drug themselves, are described. They rapidly take up skin interstitial fluid upon skin insertion to form continuous, unblockable, hydrogel conduits from attached patch-type drug reservoirs to the dermal microcirculation. Importantly, such microneedles, which can be fabricated in a wide range of patch sizes and microneedle geometries, can be easily sterilized, resist hole closure while in place, and are removed completely intact from the skin. Delivery of macromolecules is no longer limited to what can be loaded into the microneedles themselves and transdermal drug delivery is now controlled by the crosslink density of the hydrogel system rather than the stratum corneum, while electrically modulated delivery is also a unique feature. This technology has the potential to overcome the limitations of conventional microneedle designs and greatly increase the range of the type of drug that is deliverable transdermally, with ensuing benefits for industry, healthcare providers and, ultimately, patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A facile sonochemical method has been developed to prepare very small zinc sulfide nanoparticles (ZnS NPs) of extremely small size about 1. nm in diameter using a set of ionic liquids based on the bis (trifluoromethylsulfonyl) imide anion and different cations of 1-alkyl-3-methyl-imidazolium. The structural features and optical properties of the NPs were determined in depth with X-ray powder diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS) analysis, and UV-vis absorption spectroscopy. The energy band gap measurements of ZnS NPs were calculated by UV-vis absorption spectroscopy. One of the interesting features of the present work is that the wide band gap semiconductor ZnS nanocrystals were prepared which are used in the fabrication of photonic devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present here a detailed study of the complex relationship between the electromagnetic near-field and far-field responses of "real" nanostructured metallic surfaces. The near-field and far-field responses are specified in terms of (spectra of) the surface-enhanced Raman-scattering enhancement factor (SERS EF) and optical extinction, respectively. First, it is shown that gold nanorod- and nanotube-array substrates exhibit three distinct localized surface plasmon resonances (LSPRs): a longitudinal, a transverse, and a cavity mode. The cavity mode simultaneously has the largest impact on the near-field behavior (as observed through the SERS EF) and the weakest optical interaction: It has a "near-field-type" character. The transverse and longitudinal modes have a significant impact on the far-field behavior but very little impact on SERS: They have a "far-field-type" character. We confirm the presence of the cavity mode using a combination of SERS EF spectra, electron microscopy, and electromagnetic modeling and thus clearly illustrate and explain the (lack of) correlation between the SERS EF spectra and the optical response in terms of the contrasting character of the three LSPRs. In doing so, we experimentally demonstrate that, for a surface that supports multiple LSPRs, the near-field and far-field properties can in fact be tuned almost independently. It is further demonstrated that small changes in geometrical parameters that tune the spectral location of the LPSRs can also drastically influence the character of these modes, resulting in certain unusual behavior, such as the far-field resonance redshift as the near-field resonance blueshifts. DOI: 10.1103/PhysRevX.3.011001

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metal oxide nanoparticles (MONPs) have widespread usage across many disciplines, but monitoring molecular processes at their surfaces in situ has not been possible. Here we demonstrate that MONPs give highly enhanced (X10(4)) Raman scattering signals from molecules at the interface permitting direct monitoring of their reactions, when placed on top of flat metallic surfaces. Experiments with different metal oxide materials and molecules indicate that the enhancement is generic and operates at the single nanoparticle level. Simulations confirm that the amplification is principally electromagnetic and is a result of optical modulation of the underlying plasmonic metallic surface by MONPs, which act as scattering antennae and couple light into the confined region sandwiched by the underlying surface. Because of additional functionalities of metal oxides as magnetic, photoelectrochemical and catalytic materials, enhanced Raman scattering mediated by MONPs opens up significant opportunities in fundamental science, allowing direct tracking and understanding of application-specific transformations at such interfaces. We show a first example by monitoring the MONP-assisted photocatalytic decomposition reaction of an organic dye by individual nanoparticles.