862 resultados para Energy use
Resumo:
One of the most important factors that affects the performance of energy detection (ED) is the fading channel between the wireless nodes. This article investigates the performance of ED-based spectrum sensing, for cognitive radio (CR), over two-wave with diffuse power (TWDP) fading channels. The TWDP fading model characterizes a variety of fading channels, including well-known canonical fading distributions, such as Rayleigh and Rician, as well as worse than Rayleigh fading conditions modeled by the two-ray fading model. Novel analytic expressions for the average probability of detection over TWDP fading that account for single-user and cooperative spectrum sensing as well as square law selection diversity reception are derived. These expressions are used to analyze the behavior of ED-based spectrum sensing over moderate, severe and extreme fading conditions, and to investigate the use of cooperation and diversity as a means of mitigating the fading effects. Our results indicate that TWDP fading conditions can significantly degrade the sensing performance; however, it is shown that detection performance can be improved when cooperation and diversity are employed. The presented outcomes enable us to identify the limits of ED-based spectrum sensing and quantify the trade-offs between detection performance and energy efficiency for cognitive radio systems deployed within confined environments such as in-vehicular wireless networks.
Resumo:
Wave energy converters, by their nature, extract large amounts of energy
from incident waves. If the industry is to progress such that wave energy
becomes a significant provider of power in the future, large wave farms will
be required. Presently, consenting for these sites is a long and problematic
process, mainly due to a lack of knowledge of the potential environmental
impacts. Accurate numerical modelling of the effect of wave energy extraction
on the wave field and subsequent evaluation of changes to coastal
processes is therefore required. Modelling the wave field impact is also
necessary to allow optimum wave farm configurations to be determined.
This thesis addresses the need for more accurate representation of wave
energy converters in numerical models so that the effect on the wave field,
and subsequently the coastal processes, may be evaluated. Using a hybrid
of physical and numerical modelling (MIKE21 BW and SW models) the
effect of energy extraction and operation of a WEC array on the local wave
climate has been determined.
The main outcomes of the thesis are: an improved wave basin facility, in
terms of wave climate homogeneity, reducing the standard deviation of wave
amplitude by up to 50%; experimental measurement of the wave field around
WEC arrays, showing that radiated waves account for a significant proportion
of the wave disturbance; a new representation method of WECs for use
with standard numerical modelling tools, validated against experimental
results.
The methodology and procedures developed here allow subsequent evaluation
of changes to coastal processes and sediment transport due to WEC
arrays.
Resumo:
Large-scale commercial exploitation of wave energy is certain to require the deployment of wave energy converters (WECs) in arrays, creating ‘WEC farms’. An understanding of the hydrodynamic interactions in such arrays is essential for determining optimum layouts of WECs, as well as calculating the area of ocean that the farms will require. It is equally important to consider the potential impact of wave farms on the local and distal wave climates and coastal processes; a poor understanding of the resulting environmental impact may hamper progress, as it would make planning consents more difficult to obtain. It is therefore clear that an understanding the interactions between WECs within a farm is vital for the continued development of the wave energy industry.To support WEC farm design, a range of different numerical models have been developed, with both wave phase-resolving and wave phase-averaging models now available. Phase-resolving methods are primarily based on potential flow models and include semi-analytical techniques, boundary element methods and methods involving the mild-slope equations. Phase-averaging methods are all based around spectral wave models, with supra-grid and sub-grid wave farm models available as alternative implementations.The aims, underlying principles, strengths, weaknesses and obtained results of the main numerical methods currently used for modelling wave energy converter arrays are described in this paper, using a common framework. This allows a qualitative comparative analysis of the different methods to be performed at the end of the paper. This includes consideration of the conditions under which the models may be applied, the output of the models and the relationship between array size and computational effort. Guidance for developers is also presented on the most suitable numerical method to use for given aspects of WEC farm design. For instance, certain models are more suitable for studying near-field effects, whilst others are preferable for investigating far-field effects of the WEC farms. Furthermore, the analysis presented in this paper identifies areas in which the numerical modelling of WEC arrays is relatively weak and thus highlights those in which future developments are required.
Resumo:
Apesar das recentes inovações tecnológicas, o setor dos transportes continua a exercer impactes significativos sobre a economia e o ambiente. Com efeito, o sucesso na redução das emissões neste setor tem sido inferior ao desejável. Isto deve-se a diferentes fatores como a dispersão urbana e a existência de diversos obstáculos à penetração no mercado de tecnologias mais limpas. Consequentemente, a estratégia “Europa 2020” evidencia a necessidade de melhorar a eficiência no uso das atuais infraestruturas rodoviárias. Neste contexto, surge como principal objetivo deste trabalho, a melhoria da compreensão de como uma escolha de rota adequada pode contribuir para a redução de emissões sob diferentes circunstâncias espaciais e temporais. Simultaneamente, pretende-se avaliar diferentes estratégias de gestão de tráfego, nomeadamente o seu potencial ao nível do desempenho e da eficiência energética e ambiental. A integração de métodos empíricos e analíticos para avaliação do impacto de diferentes estratégias de otimização de tráfego nas emissões de CO2 e de poluentes locais constitui uma das principais contribuições deste trabalho. Esta tese divide-se em duas componentes principais. A primeira, predominantemente empírica, baseou-se na utilização de veículos equipados com um dispositivo GPS data logger para recolha de dados de dinâmica de circulação necessários ao cálculo de emissões. Foram percorridos aproximadamente 13200 km em várias rotas com escalas e características distintas: área urbana (Aveiro), área metropolitana (Hampton Roads, VA) e um corredor interurbano (Porto-Aveiro). A segunda parte, predominantemente analítica, baseou-se na aplicação de uma plataforma integrada de simulação de tráfego e emissões. Com base nesta plataforma, foram desenvolvidas funções de desempenho associadas a vários segmentos das redes estudadas, que por sua vez foram aplicadas em modelos de alocação de tráfego. Os resultados de ambas as perspetivas demonstraram que o consumo de combustível e emissões podem ser significativamente minimizados através de escolhas apropriadas de rota e sistemas avançados de gestão de tráfego. Empiricamente demonstrou-se que a seleção de uma rota adequada pode contribuir para uma redução significativa de emissões. Foram identificadas reduções potenciais de emissões de CO2 até 25% e de poluentes locais até 60%. Através da aplicação de modelos de tráfego demonstrou-se que é possível reduzir significativamente os custos ambientais relacionados com o tráfego (até 30%), através da alteração da distribuição dos fluxos ao longo de um corredor com quatro rotas alternativas. Contudo, apesar dos resultados positivos relativamente ao potencial para a redução de emissões com base em seleções de rotas adequadas, foram identificadas algumas situações de compromisso e/ou condicionantes que devem ser consideradas em futuros sistemas de eco navegação. Entre essas condicionantes importa salientar que: i) a minimização de diferentes poluentes pode implicar diferentes estratégias de navegação, ii) a minimização da emissão de poluentes, frequentemente envolve a escolha de rotas urbanas (em áreas densamente povoadas), iii) para níveis mais elevados de penetração de dispositivos de eco-navegação, os impactos ambientais em todo o sistema podem ser maiores do que se os condutores fossem orientados por dispositivos tradicionais focados na minimização do tempo de viagem. Com este trabalho demonstrou-se que as estratégias de gestão de tráfego com o intuito da minimização das emissões de CO2 são compatíveis com a minimização do tempo de viagem. Por outro lado, a minimização de poluentes locais pode levar a um aumento considerável do tempo de viagem. No entanto, dada a tendência de redução nos fatores de emissão dos poluentes locais, é expectável que estes objetivos contraditórios tendam a ser minimizados a médio prazo. Afigura-se um elevado potencial de aplicação da metodologia desenvolvida, seja através da utilização de dispositivos móveis, sistemas de comunicação entre infraestruturas e veículos e outros sistemas avançados de gestão de tráfego.
Resumo:
The ever-growing energy consumption in mobile networks stimulated by the expected growth in data tra ffic has provided the impetus for mobile operators to refocus network design, planning and deployment towards reducing the cost per bit, whilst at the same time providing a signifi cant step towards reducing their operational expenditure. As a step towards incorporating cost-eff ective mobile system, 3GPP LTE-Advanced has adopted the coordinated multi-point (CoMP) transmission technique due to its ability to mitigate and manage inter-cell interference (ICI). Using CoMP the cell average and cell edge throughput are boosted. However, there is room for reducing energy consumption further by exploiting the inherent exibility of dynamic resource allocation protocols. To this end packet scheduler plays the central role in determining the overall performance of the 3GPP longterm evolution (LTE) based on packet-switching operation and provide a potential research playground for optimizing energy consumption in future networks. In this thesis we investigate the baseline performance for down link CoMP using traditional scheduling approaches, and subsequently go beyond and propose novel energy e fficient scheduling (EES) strategies that can achieve power-e fficient transmission to the UEs whilst enabling both system energy effi ciency gain and fairness improvement. However, ICI can still be prominent when multiple nodes use common resources with di fferent power levels inside the cell, as in the so called heterogeneous networks (Het- Net) environment. HetNets are comprised of two or more tiers of cells. The rst, or higher tier, is a traditional deployment of cell sites, often referred to in this context as macrocells. The lower tiers are termed small cells, and can appear as microcell, picocells or femtocells. The HetNet has attracted signiffi cant interest by key manufacturers as one of the enablers for high speed data at low cost. Research until now has revealed several key hurdles that must be overcome before HetNets can achieve their full potential: bottlenecks in the backhaul must be alleviated, as well as their seamless interworking with CoMP. In this thesis we explore exactly the latter hurdle, and present innovative ideas on advancing CoMP to work in synergy with HetNet deployment, complemented by a novel resource allocation policy for HetNet tighter interference management. As system level simulator has been used to analyze the proposed algorithm/protocols, and results have concluded that up to 20% energy gain can be observed.
Resumo:
In Mobile Ad hoc NETworks (MANETs), where cooperative behaviour is mandatory, there is a high probability for some nodes to become overloaded with packet forwarding operations in order to support neighbor data exchange. This altruistic behaviour leads to an unbalanced load in the network in terms of traffic and energy consumption. In such scenarios, mobile nodes can benefit from the use of energy efficient and traffic fitting routing protocol that better suits the limited battery capacity and throughput limitation of the network. This PhD work focuses on proposing energy efficient and load balanced routing protocols for ad hoc networks. Where most of the existing routing protocols simply consider the path length metric when choosing the best route between a source and a destination node, in our proposed mechanism, nodes are able to find several routes for each pair of source and destination nodes and select the best route according to energy and traffic parameters, effectively extending the lifespan of the network. Our results show that by applying this novel mechanism, current flat ad hoc routing protocols can achieve higher energy efficiency and load balancing. Also, due to the broadcast nature of the wireless channels in ad hoc networks, other technique such as Network Coding (NC) looks promising for energy efficiency. NC can reduce the number of transmissions, number of re-transmissions, and increase the data transfer rate that directly translates to energy efficiency. However, due to the need to access foreign nodes for coding and forwarding packets, NC needs a mitigation technique against unauthorized accesses and packet corruption. Therefore, we proposed different mechanisms for handling these security attacks by, in particular by serially concatenating codes to support reliability in ad hoc network. As a solution to this problem, we explored a new security framework that proposes an additional degree of protection against eavesdropping attackers based on using concatenated encoding. Therefore, malicious intermediate nodes will find it computationally intractable to decode the transitive packets. We also adopted another code that uses Luby Transform (LT) as a pre-coding code for NC. Primarily being designed for security applications, this code enables the sink nodes to recover corrupted packets even in the presence of byzantine attacks.
Resumo:
Tese de doutoramento, Ciências Geofísicas e da Geoinformação (Meteorologia), Universidade de Lisboa, Faculdade de Ciências, 2015
Resumo:
Tese de doutoramento, Sistemas Sustentáveis de Energia, Universidade de Lisboa, Faculdade de Ciências, 2016
Resumo:
Energy-using products (EuPs), such as domestic appliances, audio-visual and ICT equipment contribute significantly to CO2 emissions, both in the domestic and non-domestic sectors. Policies that encourage the use of more energy efficient products can therefore generate significant reductions in overall energy consumption and hence, CO2 emissions. To the extent that these policies cause an increase the average production cost of EuPs, they may impose economic costs on producers, or on consumers, or on both. In this theoretical paper, an adaptation of a simple vertical product differentiation model – in which products are characterised in terms of their quality and their energy consumption – is used to analyse the impact of the different EuP polices on product innovation and to assess the resultant economic impacts on producers and consumers. It is shown that whereas the imposition of a binding product standard for energy efficiency unambiguously reduces aggregate profit and increases the average market price in the absence of any learning effects, the introduction or strengthening of demand-side measures (such as energy labelling) may reduce, or increase, aggregate profit. Even in the case where the overall impact is unambiguously negative, the effects of product innovation and learning can be in either direction.
Resumo:
Energy-using Products (EuPs) contribute significantly to the United Kingdom’s CO2 emissions, both in the domestic and non-domestic sectors. Policies that encourage the use of more energy efficient products (such as minimum performance standards, energy labelling, enhanced capital allowances, etc.) can therefore generate significant reductions in overall energy consumption and hence, CO2 emissions. While these policies can impose costs on the producers and consumers of these products in the short run, the process of product innovation may reduce the magnitude of these costs over time. If this is the case, then it is important that the impacts of innovation are taken into account in policy impact assessments. Previous studies have found considerable evidence of experience curve effects for EuP categories (e.g. refrigerators, televisions, etc.), with learning rates of around 20% for both average unit costs and average prices; similar to those found for energy supply technologies. Moreover, the decline in production costs has been accompanied by a significant improvement in the energy efficiency of EuPs. Building on these findings and the results of an empirical analysis of UK sales data for a range of product categories, this paper sets out an analytic framework for assessing the impact of EuP policy interventions on consumers and producers which takes explicit account of the product innovation process. The impact of the product innovation process can be seen in the continuous evolution of the energy class profiles of EuP categories over time; with higher energy classes (e.g. A, A+, etc.) entering the market and increasing their market share, while lower classes (e.g. E, F, etc.) lose share and then leave the market. Furthermore, the average prices of individual energy classes have declined over their respective lives, while new classes have typically entered the market at successively lower “launch prices”. Based on two underlying assumptions regarding the shapes of the “lifecycle profiles” for the relative sales and the relative average mark-ups of individual energy classes, a simple simulation model is developed that can replicate the observed market dynamics in terms of the evolution of market shares and average prices. The model is used to assess the effect of two alternative EuP policy interventions – a minimum energy performance standard and an energy-labelling scheme – on the average unit cost trajectory and the average price trajectory of a typical EuP category, and hence the financial impacts on producers and consumers.
Resumo:
Recent developments of high-end processors recognize temperature monitoring and tuning as one of the main challenges towards achieving higher performance given the growing power and temperature constraints. To address this challenge, one needs both suitable thermal energy abstraction and corresponding instrumentation. Our model is based on application-specific parameters such as power consumption, execution time, and asymptotic temperature as well as hardware-specific parameters such as half time for thermal rise or fall. As observed with our out-of-band instrumentation and monitoring infrastructure, the temperature changes follow a relatively slow capacitor-style charge-discharge process. Therefore, we use the lumped thermal model that initiates an exponential process whenever there is a change in processor’s power consumption. Initial experiments with two codes – Firestarter and Nekbone – validate our thermal energy model and demonstrate its use for analyzing and potentially improving the application-specific balance between temperature, power, and performance.
Resumo:
Smart Grids (SGs) appeared as the new paradigm for power system management and operation, being designed to integrate large amounts of distributed energy resources. This new paradigm requires a more efficient Energy Resource Management (ERM) and, simultaneously, makes this a more complex problem, due to the intensive use of distributed energy resources (DER), such as distributed generation, active consumers with demand response contracts, and storage units. This paper presents a methodology to address the energy resource scheduling, considering an intensive use of distributed generation and demand response contracts. A case study of a 30 kV real distribution network, including a substation with 6 feeders and 937 buses, is used to demonstrate the effectiveness of the proposed methodology. This network is managed by six virtual power players (VPP) with capability to manage the DER and the distribution network.
Resumo:
This paper proposes an energy resources management methodology based on three distinct time horizons: day-ahead scheduling, hour-ahead scheduling, and real-time scheduling. In each scheduling process it is necessary the update of generation and consumption operation and of the storage and electric vehicles storage status. Besides the new operation condition, it is important more accurate forecast values of wind generation and of consumption using results of in short-term and very short-term methods. A case study considering a distribution network with intensive use of distributed generation and electric vehicles is presented.
Resumo:
Distributed Energy Resources (DER) scheduling in smart grids presents a new challenge to system operators. The increase of new resources, such as storage systems and demand response programs, results in additional computational efforts for optimization problems. On the other hand, since natural resources, such as wind and sun, can only be precisely forecasted with small anticipation, short-term scheduling is especially relevant requiring a very good performance on large dimension problems. Traditional techniques such as Mixed-Integer Non-Linear Programming (MINLP) do not cope well with large scale problems. This type of problems can be appropriately addressed by metaheuristics approaches. This paper proposes a new methodology called Signaled Particle Swarm Optimization (SiPSO) to address the energy resources management problem in the scope of smart grids, with intensive use of DER. The proposed methodology’s performance is illustrated by a case study with 99 distributed generators, 208 loads, and 27 storage units. The results are compared with those obtained in other methodologies, namely MINLP, Genetic Algorithm, original Particle Swarm Optimization (PSO), Evolutionary PSO, and New PSO. SiPSO performance is superior to the other tested PSO variants, demonstrating its adequacy to solve large dimension problems which require a decision in a short period of time.
Resumo:
In order to develop a flexible simulator, a variety of models for Ancillary Services (AS) negotiation has been implemented in MASCEM – a multi-agent system competitive electricity markets simulator. In some of these models, the energy and the AS are addressed simultaneously while in other models they are addressed separately. This paper presents an energy and ancillary services joint market simulation. This paper proposes a deterministic approach for solving the energy and ancillary services joint market. A case study based on the dispatch of Regulation Down, Regulation Up, Spinning Reserve, and Non-Spinning Reserve services is used to demonstrate that the use of the developed methodology is suitable for solving this kind of optimization problem. The presented case study is based on CAISO real AS market data considers fifteen bids.