Road traffic information platform for energy and emissions savings


Autoria(s): Bandeira, Jorge Filipe Marto
Contribuinte(s)

Coelho, Margarida Isabel Cabrita Marques

Khattak, Asad

Data(s)

10/04/2014

10/04/2014

2013

Resumo

Apesar das recentes inovações tecnológicas, o setor dos transportes continua a exercer impactes significativos sobre a economia e o ambiente. Com efeito, o sucesso na redução das emissões neste setor tem sido inferior ao desejável. Isto deve-se a diferentes fatores como a dispersão urbana e a existência de diversos obstáculos à penetração no mercado de tecnologias mais limpas. Consequentemente, a estratégia “Europa 2020” evidencia a necessidade de melhorar a eficiência no uso das atuais infraestruturas rodoviárias. Neste contexto, surge como principal objetivo deste trabalho, a melhoria da compreensão de como uma escolha de rota adequada pode contribuir para a redução de emissões sob diferentes circunstâncias espaciais e temporais. Simultaneamente, pretende-se avaliar diferentes estratégias de gestão de tráfego, nomeadamente o seu potencial ao nível do desempenho e da eficiência energética e ambiental. A integração de métodos empíricos e analíticos para avaliação do impacto de diferentes estratégias de otimização de tráfego nas emissões de CO2 e de poluentes locais constitui uma das principais contribuições deste trabalho. Esta tese divide-se em duas componentes principais. A primeira, predominantemente empírica, baseou-se na utilização de veículos equipados com um dispositivo GPS data logger para recolha de dados de dinâmica de circulação necessários ao cálculo de emissões. Foram percorridos aproximadamente 13200 km em várias rotas com escalas e características distintas: área urbana (Aveiro), área metropolitana (Hampton Roads, VA) e um corredor interurbano (Porto-Aveiro). A segunda parte, predominantemente analítica, baseou-se na aplicação de uma plataforma integrada de simulação de tráfego e emissões. Com base nesta plataforma, foram desenvolvidas funções de desempenho associadas a vários segmentos das redes estudadas, que por sua vez foram aplicadas em modelos de alocação de tráfego. Os resultados de ambas as perspetivas demonstraram que o consumo de combustível e emissões podem ser significativamente minimizados através de escolhas apropriadas de rota e sistemas avançados de gestão de tráfego. Empiricamente demonstrou-se que a seleção de uma rota adequada pode contribuir para uma redução significativa de emissões. Foram identificadas reduções potenciais de emissões de CO2 até 25% e de poluentes locais até 60%. Através da aplicação de modelos de tráfego demonstrou-se que é possível reduzir significativamente os custos ambientais relacionados com o tráfego (até 30%), através da alteração da distribuição dos fluxos ao longo de um corredor com quatro rotas alternativas. Contudo, apesar dos resultados positivos relativamente ao potencial para a redução de emissões com base em seleções de rotas adequadas, foram identificadas algumas situações de compromisso e/ou condicionantes que devem ser consideradas em futuros sistemas de eco navegação. Entre essas condicionantes importa salientar que: i) a minimização de diferentes poluentes pode implicar diferentes estratégias de navegação, ii) a minimização da emissão de poluentes, frequentemente envolve a escolha de rotas urbanas (em áreas densamente povoadas), iii) para níveis mais elevados de penetração de dispositivos de eco-navegação, os impactos ambientais em todo o sistema podem ser maiores do que se os condutores fossem orientados por dispositivos tradicionais focados na minimização do tempo de viagem. Com este trabalho demonstrou-se que as estratégias de gestão de tráfego com o intuito da minimização das emissões de CO2 são compatíveis com a minimização do tempo de viagem. Por outro lado, a minimização de poluentes locais pode levar a um aumento considerável do tempo de viagem. No entanto, dada a tendência de redução nos fatores de emissão dos poluentes locais, é expectável que estes objetivos contraditórios tendam a ser minimizados a médio prazo. Afigura-se um elevado potencial de aplicação da metodologia desenvolvida, seja através da utilização de dispositivos móveis, sistemas de comunicação entre infraestruturas e veículos e outros sistemas avançados de gestão de tráfego.

Despite recent technological innovations, transportation sector is still producing significant impacts on the economy and environment. In fact, the success in reducing transportation emissions has been lower than desirable due to several factors such as the urban sprawl and several barriers to the market penetration of cleaner technologies. Therefore, the “Europe 2020” strategy has emphasised the relevance of improving the efficiency in the transportation networks through the better use of the existing infrastructures. In this context, the main objective of this thesis is increasing the understanding of how proper route choices can contribute to reduce emissions output over different spatial and temporal contexts. Simultaneously, it is intended to evaluate the potential of different traffic management strategies in terms of traffic performance and energy/environmental efficiency. The integration of empirical and analytical methods to assess the impact of different traffic optimization strategies on CO2 emissions and local pollutants constitutes one the main contributions of this work. This thesis has been divided in two main parts. The first is predominantly empirical, using field data as the main source of information. Using GPS equipped vehicles, empirical data for approximately 13200 km of road coverage have been collected to estimate energy and emissions impacts of route choice in three different scenarios: a medium-sized urban area (Aveiro), a metropolitan area (Hampton Roads, VA) and an intercity corridor (Oporto-suburban area). The second part, predominantly analytical, is essentially based on the output of traffic simulators and optimization models. The analytical component was based on the capability of microscopic traffic models to generate detailed emissions information and to generate link-based performance functions. Then, different traffic management strategies were tested to evaluate road networks in terms of traffic performance and emissions. Both outcomes of the empirical and analytical approaches have demonstrated that fuel use and emissions impacts can also be significantly reduced through appropriate route choices and advanced traffic management systems. The empirical assessment of route choice impacts has shown that both during off peak and peak periods, the selection of an appropriate route can lead to significant emissions reduction. Depending on the location, potential emissions savings of CO2 up to 25% and local pollutants up to 60% were found. The analytical approach has demonstrated that it is possible to significantly reduce system environmental costs (30%) by modifying traffic flow distribution along a corridor with 4 alternative routes. However, despite the positive results in terms of the potential for emissions reduction based on appropriate route choices, a number of important trade-offs that need to be considered in future implementations of eco-routing systems. Among these trade-offs it is worth noting that: i) different pollutants may lead to different ecorouting strategies, ii) the minimization of pollutants emissions often involves choosing urban routes (densely populated), iii) for higher penetration levels of eco-routing devices considering local pollutants, system environmental impacts can be higher than if drivers were guided under the traditional devices focused on travel time. With this research, it has been demonstrated that road traffic management strategies focused on minimizing CO2 emissions and fuel consumption can be compatible with the minimization of system travel time. On the other hand the minimization of local pollutants may lead to considerable increases in travel time. However, given the trend rate of reduction in the emissions factors of local pollutants, it is expected that such trade-offs would tend to be minimized in medium term. Thus, the developed methodology has great potential for further real life application, either through the use of nomadic devices, infrastructures to vehicle communication or different advanced traffic management systems.

Doutoramento em Engenharia Mecânica

Identificador

http://hdl.handle.net/10773/12075

101418329

Idioma(s)

eng

Publicador

Universidade de Aveiro

Relação

FCT - SFRH/BD/66104/2009

FCT - PTDC/SENTRA/

FCT - PEst-C/EME/UI0481

Direitos

openAccess

Palavras-Chave #Engenharia mecânica - Teses de doutoramento #Transportes rodoviários #Emissões atmosféricas #Poluentes #Consumo de energia
Tipo

doctoralThesis