934 resultados para Disperse azo dye


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (doctoral)--Universitat Rostock.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (doctoral)--

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (doctoral)--Grossherzoglich Hessische Ludwigs- Universitat zu Giessen, 1906.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modified-templated- hydrothermal technique was used to prepare mesoporous titania powders through the interaction of tiny anatase seeds (

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Starchy plant foods are significant in the diet of almost all peoples. Archaeologically, however, preservation of such plants is limited, and direct evidence of plant use by past people is also rare. Although starch grains can be preserved on artefacts used to process starchy plants, it is very difficult to identify grains damaged by processing methods such as milling or cooking. We present a method for identifying such damaged starch grains using Congo Red staining to identify cooking or milling activities in the past subsistence behaviour of Aboriginal people of southeast Queensland, Australia. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An Australian natural zeolite was collected, characterised and employed for basic dye adsorption in aqueous solution. The natural zeolite is mainly composed of clinoptiloite, quartz and mordenite and has cation-exchange capacity of 120 meq/100 g. The natural zeolite presents higher adsorption capacity for methylene blue than rhodamine B with the maximal adsorption capacity of 2.8 x 10(-5) and 7.9 x 10(-5) Mot/g at 50 degrees C for rhodamine B and methylene blue, respectively. Kinetic studies indicated that the adsorption followed the pseudo second-order kinetics and could be described as two-stage diffusion process. The adsorption isotherm could be fitted by the Langmuir and Freundlich models. Thermodynamic calculations showed that the adsorption is endothermic process with Delta H degrees at 2.0 and 8.7 kJ/mol for rhodamine B and methylene blue. It has also found that the regenerated zeolites by high-temperature calcination and Fenton oxidation showed similar adsorption capacity but lower than the fresh sample. Only 60% capacity could be recovered by the two regeneration techniques. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adsorbents from coal fly ash treated by a solid-state fusion method using NaOH were prepared. It was found that amorphous aluminosilicate, geopolymers would be formed. These fly ash-derived inorganic polymers were assessed as potential adsorbents for removal of some basic dyes, methylene blue and crystal violet, from aqueous solution. It was found that the adsorption capacity of the synthesised adsorbents depends on the preparation conditions such as NaOH:fly-ash ratio and fusion temperature with the optimal conditions being at 121 weight ratio of Na:fly-ash at 250-350 degrees C. The synthesised materials exhibit much higher adsorption capacity than fly ash itself and natural zeolite. The adsorption isotherm can be fitted by Langmuir and Freundlich models while the two-site Langmuir model producing the best results. It was also found that the fly ash derived geopolymeric adsorbents show higher adsorption capacity for crystal violet than methylene blue and the adsorption temperature influences the adsorption capacity. Kinetic studies show that the adsorption process follows the pseudo second-order kinetics. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colored wastewater poses a challenge to the conventional wastewater treatment techniques. Solid-liquid phase adsorption has been found to be effective for the removal of dyes from effluent. In this paper, the ability of bentonite as an adsorbent for the removal of a commercial dye, Basic Red 2 (BR2), from an aqueous solution has been investigated under various experimental conditions. The adsorption kinetics was shown to be pseudo-second-order. It was found that bentonite had high adsorption capacity for BR2 due to cation exchange. The adsorption equilibrium data can be fitted well by the Langmuir adsorption isotherm model. The effect of the experimental parameters, such as temperature, salt, and pH was investigated through a number of batch adsorption experiments. It was found that the removal of dye increased with the increase in solution pH. However, the change of temperature (15-45 degrees C) and the addition of sodium chloride were found to have little effect on the adsorption process. The results show that electrostatic interactions are not dominant in the interaction between BR2 and bentonite. It was found that the adsorption was a rapid process with 80-90% of the dye removed within the first 2-3 min. Bentonite as an adsorbent is promising for color removal from wastewater.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using biomimetic chemical reduction or Clostridium perfringens cell extract containing azoreductase, the dimer-fluorescent probe 2,4-O-bisdansyl-6,7- diazabicyclooct-6-ene, which possesses a conformationally constrained cis-azo bridge, is reduced to the tetra-equatorial 2,4-O-bisdansyl-cyclohexyl-3,5- bisammonium salt which exhibits fluorescence indicative of a dansyl monomer. © 2012 The Royal Society of Chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The newly synthesized dioxaborine dyes, derivatives of dehydroacetic acid, were tested for the detection of amines and ammonia. To discriminate the substance with efficient sensing parameters, series of ca. 20 dioxaborine dyes were synthesized and tested for reactivity with amines. The most promising one showed the fluorescent sensitivity to amines in the range of 1-4 ppm. © (2014) Trans Tech Publications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The multifunctional properties of carbon nanotubes (CNTs) make them a powerful platform for unprecedented innovations in a variety of practical applications. As a result of the surging growth of nanotechnology, nanotubes present a potential problem as an environmental pollutant, and as such, an efficient method for their rapid detection must be established. Here, we propose a novel type of ionic sensor complex for detecting CNTs – an organic dye that responds sensitively and selectively to CNTs with a photoluminescent signal. The complexes are formed through Coulomb attractions between dye molecules with uncompensated charges and CNTs covered with an ionic surfactant in water. We demonstrate that the photoluminescent excitation of the dye can be transferred to the nanotubes, resulting in selective and strong amplification (up to a factor of 6) of the light emission from the excitonic levels of CNTs in the near-infrared spectral range, as experimentally observed via excitation-emission photoluminescence (PL) mapping. The chirality of the nanotubes and the type of ionic surfactant used to disperse the nanotubes both strongly affect the amplification; thus, the complexation provides sensing selectivity towards specific CNTs. Additionally, neither similar uncharged dyes nor CNTs covered with neutral surfactant form such complexes. As model organic molecules, we use a family of polymethine dyes with an easily tailorable molecular structure and, consequently, tunable absorbance and PL characteristics. This provides us with a versatile tool for the controllable photonic and electronic engineering of an efficient probe for CNT detection.