910 resultados para Diffusion coefficient
Resumo:
The aim of this study was to quantify the water consumption and the crop coefficients (Kc) for the potato (Solanum tuberosum L.), in Seropédica, Rio de Janeiro (RJ), Brazil, under organic management, and to simulate the crop evapotranspiration (ETc) using the Kc obtained in the field and the ones recommended by the Food and Agriculture Organization (FAO). The water consumption was obtained through soil water balance, using TDR probes installed at 0.15m and 0.30m deep. At the different stages of development, the Kc was determined by the ratio of ETc and reference evapotranspiration, obtained by Penman-Monteith FAO 56. The crop coefficients obtained were 0.35, 0.45, 1.29 and 0.63. The accumulated ETc obtained in the field was 109.6 mm, while the ETc accumulated from FAO's Kc were 142.2 and 138mm, respectively, considering the classical values and the values adjusted to the local climatic conditions. The simulation of water consumption based on meteorological data of historical series from 1961 to 2007 provided higher value of ETc when compared with the one obtained in the field. From the meteorological data of historical series, it was observed that the use of Kc recommended by FAO may overestimate the amount of irrigation water by 9%, over the same growing season.
Resumo:
ABSTRACT This paper aims at describing the osmotic dehydration of radish cut into cylindrical pieces, using one- and two-dimensional analytical solutions of diffusion equation with boundary conditions of the first and third kind. These solutions were coupled with an optimizer to determine the process parameters, using experimental data. Three models were proposed to describe the osmotic dehydration of radish slices in brine at low temperature. The two-dimensional model with boundary condition of the third kind well described the kinetics of mass transfers, and it enabled prediction of moisture and solid distributions at any given time.
Resumo:
The flow structure of cold and ignited jets issuing into a co-flowing air stream was experimentally studied using a laser Doppler velocimeter. Methane was employed as the jet fluid discharging from circular and elliptic nozzles with aspect ratios varying from 1.29 to 1.60. The diameter of the circular nozzle was 4.6 mm and the elliptic nozzles had approximately the same exit area as that of the circular nozzle. These non-circular nozzles were employed in order to increase the stability of attached jet diffusion flames. The time-averaged velocity and r.m.s. value of the velocity fluctuation in the streamwise and transverse directions were measured over the range of co-flowing stream velocities corresponding to different modes of flame blowout that are identified as either lifted or attached flames. On the basis of these measurements, attempts were made to explain the existence of an apparent optimum aspect ratio for the blowout of attached flames observed at higher values of co-flowing stream velocities. The insensitivity of the blowout limits of lifted flames to nozzle geometry observed in our previous work at low co-flowing stream velocities was also explained. Measurements of the fuel concentration at the jet centerline indicated that the mixing process was enhanced with the 1.38 aspect ratio jet compared with the 1.60 aspect ratio jet. On the basis of the obtained experimental data, it was suggested that the higher blowout limits of attached flames for an elliptic jet of 1.38 aspect ratio was due to higher entrainment rates.
Resumo:
The Mathematica system (version 4.0) is employed in the solution of nonlinear difusion and convection-difusion problems, formulated as transient one-dimensional partial diferential equations with potential dependent equation coefficients. The Generalized Integral Transform Technique (GITT) is first implemented for the hybrid numerical-analytical solution of such classes of problems, through the symbolic integral transformation and elimination of the space variable, followed by the utilization of the built-in Mathematica function NDSolve for handling the resulting transformed ODE system. This approach ofers an error-controlled final numerical solution, through the simultaneous control of local errors in this reliable ODE's solver and of the proposed eigenfunction expansion truncation order. For covalidation purposes, the same built-in function NDSolve is employed in the direct solution of these partial diferential equations, as made possible by the algorithms implemented in Mathematica (versions 3.0 and up), based on application of the method of lines. Various numerical experiments are performed and relative merits of each approach are critically pointed out.
Resumo:
The mathematical model for two-dimensional unsteady sonic flow, based on the classical diffusion equation with imaginary coefficient, is presented and discussed. The main purpose is to develop a rigorous formulation in order to bring into light the correspondence between the sonic, supersonic and subsonic panel method theory. Source and doublet integrals are obtained and Laplace transformation demonstrates that, in fact, the source integral is the solution of the doublet integral equation. It is shown that the doublet-only formulation reduces to a Volterra integral equation of the first kind and a numerical method is proposed in order to solve it. To the authors' knowledge this is the first reported solution to the unsteady sonic thin airfoil problem through the use of doublet singularities. Comparisons with the source-only formulation are shown for the problem of a flat plate in combined harmonic heaving and pitching motion.
Resumo:
Diffusion tensor imaging (DTI) is an advanced magnetic resonance imaging (MRI) technique. DTI is based on free thermal motion (diffusion) of water molecules. The properties of diffusion can be represented using parameters such as fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity, which are calculated from DTI data. These parameters can be used to study the microstructure in fibrous structure such as brain white matter. The aim of this study was to investigate the reproducibility of region-of-interest (ROI) analysis and determine associations between white matter integrity and antenatal and early postnatal growth at term age using DTI. Antenatal growth was studied using both the ROI and tract-based spatial statistics (TBSS) method and postnatal growth using only the TBSS method. The infants included to this study were born below 32 gestational weeks or birth weight less than 1,501 g and imaged with a 1.5 T MRI system at term age. Total number of 132 infants met the inclusion criteria between June 2004 and December 2006. Due to exclusion criteria, a total of 76 preterm infants (ROI) and 36 preterm infants (TBSS) were accepted to this study. The ROI analysis was quite reproducible at term age. Reproducibility varied between white matter structures and diffusion parameters. Normal antenatal growth was positively associated with white matter maturation at term age. The ROI analysis showed associations only in the corpus callosum. Whereas, TBSS revealed associations in several brain white matter areas. Infants with normal antenatal growth showed more mature white matter compared to small for gestational age infants. The gestational age at birth had no significant association with white matter maturation at term age. It was observed that good early postnatal growth associated negatively with white matter maturation at term age. Growth-restricted infants seemed to have delayed brain maturation that was not fully compensated at term, despite catchup growth.
Resumo:
[N. 1:4400000].
Resumo:
The partial replacement of NaCl by KCl is a promising alternative to produce a cheese with lower sodium content since KCl does not change the final quality of the cheese product. In order to assure proper salt proportions, mathematical models are employed to control the product process and simulate the multicomponent diffusion during the reduced salt cheese ripening period. The generalized Fick's Second Law is widely accepted as the primary mass transfer model within solid foods. The Finite Element Method (FEM) was used to solve the system of differential equations formed. Therefore, a NaCl and KCl multicomponent diffusion was simulated using a 20% (w/w) static brine with 70% NaCl and 30% KCl during Prato cheese (a Brazilian semi-hard cheese) salting and ripening. The theoretical results were compared with experimental data, and indicated that the deviation was 4.43% for NaCl and 4.72% for KCl validating the proposed model for the production of good quality, reduced-sodium cheeses.
Resumo:
Potato pulp waste (PPW) drying was investigated under different experimental conditions (temperatures from 50 to 70 °C and air flow from 0.06 to 0.092 m³ m- 2 s- 1) as a possible way to recover the waste generated by potato chip industries and to select the best-fit model to the experimental results of PPW drying. As a criterion to evaluate the fitting of mathematical models, a method based on the sum of the scores assigned to the four evaluated statistical parameters was used: regression coefficient (R²), relative mean error P (%), root mean square error (RMSE), and reduced chi-square (χ²). The results revealed that temperature and air velocity are important parameters to reduce PPW drying time. The models Midilli and Diffusion had the lowest sum values, i.e., with the best fit to the drying data, satisfactorily representing the drying kinetics of PPW.