857 resultados para Demand uncertainty
Resumo:
This study presents an approach to combine uncertainties of the hydrological model outputs predicted from a number of machine learning models. The machine learning based uncertainty prediction approach is very useful for estimation of hydrological models' uncertainty in particular hydro-metrological situation in real-time application [1]. In this approach the hydrological model realizations from Monte Carlo simulations are used to build different machine learning uncertainty models to predict uncertainty (quantiles of pdf) of the a deterministic output from hydrological model . Uncertainty models are trained using antecedent precipitation and streamflows as inputs. The trained models are then employed to predict the model output uncertainty which is specific for the new input data. We used three machine learning models namely artificial neural networks, model tree, locally weighted regression to predict output uncertainties. These three models produce similar verification results, which can be improved by merging their outputs dynamically. We propose an approach to form a committee of the three models to combine their outputs. The approach is applied to estimate uncertainty of streamflows simulation from a conceptual hydrological model in the Brue catchment in UK and the Bagmati catchment in Nepal. The verification results show that merged output is better than an individual model output. [1] D. L. Shrestha, N. Kayastha, and D. P. Solomatine, and R. Price. Encapsulation of parameteric uncertainty statistics by various predictive machine learning models: MLUE method, Journal of Hydroinformatic, in press, 2013.
Resumo:
A procedure for characterizing global uncertainty of a rainfall-runoff simulation model based on using grey numbers is presented. By using the grey numbers technique the uncertainty is characterized by an interval; once the parameters of the rainfall-runoff model have been properly defined as grey numbers, by using the grey mathematics and functions it is possible to obtain simulated discharges in the form of grey numbers whose envelope defines a band which represents the vagueness/uncertainty associated with the simulated variable. The grey numbers representing the model parameters are estimated in such a way that the band obtained from the envelope of simulated grey discharges includes an assigned percentage of observed discharge values and is at the same time as narrow as possible. The approach is applied to a real case study highlighting that a rigorous application of the procedure for direct simulation through the rainfall-runoff model with grey parameters involves long computational times. However, these times can be significantly reduced using a simplified computing procedure with minimal approximations in the quantification of the grey numbers representing the simulated discharges. Relying on this simplified procedure, the conceptual rainfall-runoff grey model is thus calibrated and the uncertainty bands obtained both downstream of the calibration process and downstream of the validation process are compared with those obtained by using a well-established approach, like the GLUE approach, for characterizing uncertainty. The results of the comparison show that the proposed approach may represent a valid tool for characterizing the global uncertainty associable with the output of a rainfall-runoff simulation model.
Resumo:
Due to the increase in water demand and hydropower energy, it is getting more important to operate hydraulic structures in an efficient manner while sustaining multiple demands. Especially, companies, governmental agencies, consultant offices require effective, practical integrated tools and decision support frameworks to operate reservoirs, cascades of run-of-river plants and related elements such as canals by merging hydrological and reservoir simulation/optimization models with various numerical weather predictions, radar and satellite data. The model performance is highly related with the streamflow forecast, related uncertainty and its consideration in the decision making. While deterministic weather predictions and its corresponding streamflow forecasts directly restrict the manager to single deterministic trajectories, probabilistic forecasts can be a key solution by including uncertainty in flow forecast scenarios for dam operation. The objective of this study is to compare deterministic and probabilistic streamflow forecasts on an earlier developed basin/reservoir model for short term reservoir management. The study is applied to the Yuvacık Reservoir and its upstream basin which is the main water supply of Kocaeli City located in the northwestern part of Turkey. The reservoir represents a typical example by its limited capacity, downstream channel restrictions and high snowmelt potential. Mesoscale Model 5 and Ensemble Prediction System data are used as a main input and the flow forecasts are done for 2012 year using HEC-HMS. Hydrometeorological rule-based reservoir simulation model is accomplished with HEC-ResSim and integrated with forecasts. Since EPS based hydrological model produce a large number of equal probable scenarios, it will indicate how uncertainty spreads in the future. Thus, it will provide risk ranges in terms of spillway discharges and reservoir level for operator when it is compared with deterministic approach. The framework is fully data driven, applicable, useful to the profession and the knowledge can be transferred to other similar reservoir systems.
Resumo:
New business and technology platforms are required to sustainably manage urban water resources [1,2]. However, any proposed solutions must be cognisant of security, privacy and other factors that may inhibit adoption and hence impact. The FP7 WISDOM project (funded by the European Commission - GA 619795) aims to achieve a step change in water and energy savings via the integration of innovative Information and Communication Technologies (ICT) frameworks to optimize water distribution networks and to enable change in consumer behavior through innovative demand management and adaptive pricing schemes [1,2,3]. The WISDOM concept centres on the integration of water distribution, sensor monitoring and communication systems coupled with semantic modelling (using ontologies, potentially connected to BIM, to serve as intelligent linkages throughout the entire framework) and control capabilities to provide for near real-time management of urban water resources. Fundamental to this framework are the needs and operational requirements of users and stakeholders at domestic, corporate and city levels and this requires the interoperability of a number of demand and operational models, fed with data from diverse sources such as sensor networks and crowsourced information. This has implications regarding the provenance and trustworthiness of such data and how it can be used in not only the understanding of system and user behaviours, but more importantly in the real-time control of such systems. Adaptive and intelligent analytics will be used to produce decision support systems that will drive the ability to increase the variability of both supply and consumption [3]. This in turn paves the way for adaptive pricing incentives and a greater understanding of the water-energy nexus. This integration is complex and uncertain yet being typical of a cyber-physical system, and its relevance transcends the water resource management domain. The WISDOM framework will be modeled and simulated with initial testing at an experimental facility in France (AQUASIM – a full-scale test-bed facility to study sustainable water management), then deployed and evaluated in in two pilots in Cardiff (UK) and La Spezia (Italy). These demonstrators will evaluate the integrated concept providing insight for wider adoption.
Resumo:
Libraries are caught in the middle—between static or shrinking budgets on one hand and ever-expanding user needs on the other. How did we get here, and where do we go from here? This paper will offer two perspectives: Part I will present survey results about changing Library purchasing habits in light of changing formats, access, business models and user demands. Data from a previous survey on this topic will be compared and updated. Pricing trends and possible futures will be discussed. Part II will briefly trace the history of libraries’ roles in scholarly communication and connecting learners with knowledge. From there, we show an example of phasing in a patron-driven / demand-driven and short-term loan e-book program, complete with incorporating these tools in library instruction, research, and portable device loadability for field work.
Resumo:
Expediting new program development can help universities meet student and employer demand while gaining an edge over competitors, but coordinating program development and approval requires careful preparation and execution. This report profiles strategies to measure market demand for new programs, choose programs for accelerated development, and leverage internal resources. The report also suggests ways to structure and staff program development to maximize speed and effectiveness.
Resumo:
Este trabalho utilizou os dados da Pesquisa de Orçamentos Familiares (POF) na Região Metropolitana de Porto Alegre (RMPA), realizada pelo Centro de Estudos e Pesquisas Econômicas (IEPE) da Universidade Federal do Rio Grande do Sul (UFRGS), em 1995, para estimar um sistema de demanda por alimentos. Implementou-se o Almost Ideal Demand System (AIDs), proposto por Deaton e Muellbauer. Com base nos coeficientes estimados, calcularam-se as elasticidadespreço, preço-cruzadas e renda para dez subgrupos de alimentos.
Resumo:
Using vector autoregressive (VAR) models and Monte-Carlo simulation methods we investigate the potential gains for forecasting accuracy and estimation uncertainty of two commonly used restrictions arising from economic relationships. The Örst reduces parameter space by imposing long-term restrictions on the behavior of economic variables as discussed by the literature on cointegration, and the second reduces parameter space by imposing short-term restrictions as discussed by the literature on serial-correlation common features (SCCF). Our simulations cover three important issues on model building, estimation, and forecasting. First, we examine the performance of standard and modiÖed information criteria in choosing lag length for cointegrated VARs with SCCF restrictions. Second, we provide a comparison of forecasting accuracy of Ötted VARs when only cointegration restrictions are imposed and when cointegration and SCCF restrictions are jointly imposed. Third, we propose a new estimation algorithm where short- and long-term restrictions interact to estimate the cointegrating and the cofeature spaces respectively. We have three basic results. First, ignoring SCCF restrictions has a high cost in terms of model selection, because standard information criteria chooses too frequently inconsistent models, with too small a lag length. Criteria selecting lag and rank simultaneously have a superior performance in this case. Second, this translates into a superior forecasting performance of the restricted VECM over the VECM, with important improvements in forecasting accuracy ñreaching more than 100% in extreme cases. Third, the new algorithm proposed here fares very well in terms of parameter estimation, even when we consider the estimation of long-term parameters, opening up the discussion of joint estimation of short- and long-term parameters in VAR models.
Resumo:
Lucas (1987) has shown the surprising result that the welfare cost of business cycles is quite small. Using standard assumptions on preferences and a fully-áedged econometric model we computed the welfare costs of macroeconomic uncertainty for the post-WWII era using the multivariate Beveridge-Nelson decomposition for trends and cycles, which considers not only business-cycle uncertainty but also uncertainty from the stochastic trend in consumption. The post-WWII period is relatively quiet, with the welfare costs of uncertainty being about 0:9% of per-capita consumption. Although changing the decomposition method changed substantially initial results, the welfare cost of uncertainty is qualitatively small in the post-WWII era - about $175.00 a year per-capita in the U.S. We also computed the marginal welfare cost of macroeconomic uncertainty using this same technique. It is about twice as large as the welfare cost ñ$350.00 a year per-capita.
Resumo:
For strictly quasi concave differentiable utility functions, demand is shown to be differentiable almost everywhere if marginal utilities are pointwise Lipschitzian. For concave utility functions, demand is differentiable almost everywhere in the case of differentiable additively separable utility or in the case of quasi-linear utility.
Resumo:
In this paper we apply the theory of declsion making with expected utility and non-additive priors to the choice of optimal portfolio. This theory describes the behavior of a rational agent who i5 averse to pure 'uncertainty' (as well as, possibly, to 'risk'). We study the agent's optimal allocation of wealth between a safe and an uncertain asset. We show that there is a range of prices at which the agent neither buys not sells short the uncertain asset. In contrast the standard theory of expected utility predicts that there is exactly one such price. We also provide a definition of an increase in uncertainty aversion and show that it causes the range of prices to increase.
Resumo:
With standard assumptions on preferences and a fully-fledged econometric model we computed the welfare costs of macroeconomic uncertainty for post-war U.S. using the BeveridgeNelson decomposition. Welfare costs are about 0.9% per-capita consumption ($175.00) and marginal welfare costs are about twice as large.
Resumo:
This paper investigates which properties money-demand functions have to satisfy to be consistent with multidimensional extensions of Lucasí(2000) versions of the Sidrauski (1967) and the shopping-time models. We also investigate how such classes of models relate to each other regarding the rationalization of money demands. We conclude that money demand functions rationalizable by the shoppingtime model are always rationalizable by the Sidrauski model, but that the converse is not true. The log-log money demand with an interest-rate elasticity greater than or equal to one and the semi-log money demand are counterexamples.