868 resultados para Data Mining
Resumo:
King, R. D. and Ouali, M. (2004) Poly-transformation. In proceedings of 5th International Conference on Intelligent Data Engineering and Automated Learning (IDEAL 2004). Springer LNCS 3177 p99-107
Resumo:
Urquhart, C. (editor for JUSTEIS team), Spink, S., Thomas, R., Yeoman, A., Durbin, J., Turner, J., Armstrong, A., Lonsdale, R. & Fenton, R. (2003). JUSTEIS (JISC Usage Surveys: Trends in Electronic Information Services) Strand A: survey of end users of all electronic information services (HE and FE), with Action research report. Final report 2002/2003 Cycle Four. Aberystwyth: Department of Information Studies, University of Wales Aberystwyth with Information Automation Ltd (CIQM). Sponsorship: JISC
Resumo:
Q. Shen and R. Jensen, 'Rough sets, their extensions and applications,' International Journal of Automation and Computing (IJAC), vol. 4, no. 3, pp. 217-218, 2007.
Resumo:
R. Jensen, 'Performing Feature Selection with ACO. Swarm Intelligence and Data Mining,' A. Abraham, C. Grosan and V. Ramos (eds.), Studies in Computational Intelligence, vol. 34, pp. 45-73. 2006.
Resumo:
R. Jensen, Q. Shen and A. Tuson, 'Finding Rough Set Reducts with SAT,' Proceedings of the 10th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing, LNAI 3641, pp. 194-203, 2005.
Resumo:
M. Galea, Q. Shen and J. Levine. Evolutionary approaches to fuzzy modelling. Knowledge Engineering Review, 19(1):27-59, 2004.
Resumo:
M. Galea and Q. Shen. Simultaneous ant colony optimisation algorithms for learning linguistic fuzzy rules. A. Abraham, C. Grosan and V. Ramos (Eds.), Swarm Intelligence in Data Mining, pages 75-99.
Resumo:
R. Jensen and Q. Shen, 'Fuzzy-Rough Feature Significance for Fuzzy Decision Trees,' in Proceedings of the 2005 UK Workshop on Computational Intelligence, pp. 89-96, 2005.
Resumo:
The problem of discovering frequent poly-regions (i.e. regions of high occurrence of a set of items or patterns of a given alphabet) in a sequence is studied, and three efficient approaches are proposed to solve it. The first one is entropy-based and applies a recursive segmentation technique that produces a set of candidate segments which may potentially lead to a poly-region. The key idea of the second approach is the use of a set of sliding windows over the sequence. Each sliding window covers a sequence segment and keeps a set of statistics that mainly include the number of occurrences of each item or pattern in that segment. Combining these statistics efficiently yields the complete set of poly-regions in the given sequence. The third approach applies a technique based on the majority vote, achieving linear running time with a minimal number of false negatives. After identifying the poly-regions, the sequence is converted to a sequence of labeled intervals (each one corresponding to a poly-region). An efficient algorithm for mining frequent arrangements of intervals is applied to the converted sequence to discover frequently occurring arrangements of poly-regions in different parts of DNA, including coding regions. The proposed algorithms are tested on various DNA sequences producing results of significant biological meaning.
Resumo:
Mapping novel terrain from sparse, complex data often requires the resolution of conflicting information from sensors working at different times, locations, and scales, and from experts with different goals and situations. Information fusion methods help resolve inconsistencies in order to distinguish correct from incorrect answers, as when evidence variously suggests that an object's class is car, truck, or airplane. The methods developed here consider a complementary problem, supposing that information from sensors and experts is reliable though inconsistent, as when evidence suggests that an objects class is car, vehicle, or man-made. Underlying relationships among objects are assumed to be unknown to the automated system of the human user. The ARTMAP information fusion system uses distributed code representations that exploit the neural network's capacity for one-to-many learning in order to produce self-organizing expert systems that discover hierarchial knowledge structures. The system infers multi-level relationships among groups of output classes, without any supervised labeling of these relationships. The procedure is illustrated with two image examples.
Resumo:
Classifying novel terrain or objects front sparse, complex data may require the resolution of conflicting information from sensors working at different times, locations, and scales, and from sources with different goals and situations. Information fusion methods can help resolve inconsistencies, as when evidence variously suggests that an object's class is car, truck, or airplane. The methods described here consider a complementary problem, supposing that information from sensors and experts is reliable though inconsistent, as when evidence suggests that an object's class is car, vehicle, and man-made. Underlying relationships among objects are assumed to be unknown to the automated system or the human user. The ARTMAP information fusion system used distributed code representations that exploit the neural network's capacity for one-to-many learning in order to produce self-organizing expert systems that discover hierarchical knowledge structures. The system infers multi-level relationships among groups of output classes, without any supervised labeling of these relationships.
Resumo:
Classifying novel terrain or objects from sparse, complex data may require the resolution of conflicting information from sensors woring at different times, locations, and scales, and from sources with different goals and situations. Information fusion methods can help resolve inconsistencies, as when eveidence variously suggests that and object's class is car, truck, or airplane. The methods described her address a complementary problem, supposing that information from sensors and experts is reliable though inconsistent, as when evidence suggests that an object's class is car, vehicle, and man-made. Underlying relationships among classes are assumed to be unknown to the autonomated system or the human user. The ARTMAP information fusion system uses distributed code representations that exploit the neural network's capacity for one-to-many learning in order to produce self-organizing expert systems that discover hierachical knowlege structures. The fusion system infers multi-level relationships among groups of output classes, without any supervised labeling of these relationships. The procedure is illustrated with two image examples, but is not limited to image domain.
Resumo:
Temporal representation and reasoning plays an important role in Data Mining and Knowledge Discovery, particularly, in mining and recognizing patterns with rich temporal information. Based on a formal characterization of time-series and state-sequences, this paper presents the computational technique and algorithm for matching state-based temporal patterns. As a case study of real-life applications, zone-defense pattern recognition in basketball games is specially examined as an illustrating example. Experimental results demonstrate that it provides a formal and comprehensive temporal ontology for research and applications in video events detection.
Resumo:
Data identification is a key task for any Internet Service Provider (ISP) or network administrator. As port fluctuation and encryption become more common in P2P traffic wishing to avoid identification, new strategies must be developed to detect and classify such flows. This paper introduces a new method of separating P2P and standard web traffic that can be applied as part of a data mining process, based on the activity of the hosts on the network. Unlike other research, our method is aimed at classifying individual flows rather than just identifying P2P hosts or ports. Heuristics are analysed and a classification system proposed. The accuracy of the system is then tested using real network traffic from a core internet router showing over 99% accuracy in some cases. We expand on this proposed strategy to investigate its application to real-time, early classification problems. New proposals are made and the results of real-time experiments compared to those obtained in the data mining research. To the best of our knowledge this is the first research to use host based flow identification to determine a flows application within the early stages of the connection.
Resumo:
Many of the challenges faced in health care delivery can be informed through building models. In particular, Discrete Conditional Survival (DCS) models, recently under development, can provide policymakers with a flexible tool to assess time-to-event data. The DCS model is capable of modelling the survival curve based on various underlying distribution types and is capable of clustering or grouping observations (based on other covariate information) external to the distribution fits. The flexibility of the model comes through the choice of data mining techniques that are available in ascertaining the different subsets and also in the choice of distribution types available in modelling these informed subsets. This paper presents an illustrated example of the Discrete Conditional Survival model being deployed to represent ambulance response-times by a fully parameterised model. This model is contrasted against use of a parametric accelerated failure-time model, illustrating the strength and usefulness of Discrete Conditional Survival models.