932 resultados para DENTIN SURFACES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Correlative fractography is a new expression proposed here to describe a new method for the association between scanning electron microscopy (SEM) and light microscopy (LM) for the qualitative and quantitative analysis of fracture surfaces. This article presents a new method involving the fusion of one elevation map obtained by extended depth from focus reconstruction from LM with exactly the same area by SEM and associated techniques, as X-ray mapping. The true topographic information is perfectly associated to local fracture mechanisms with this new technique, presented here as an alternative to stereo-pair reconstruction for the investigation of fractured components. The great advantage of this technique resides in the possibility of combining any imaging methods associated with LM and SEM for the same observed field from fracture surface. © Microscopy Society of America 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the effects of the morphology and physicochemical properties of calcium phosphate (CaP) nanoparticles on osteogenesis. Two types of CaP nanoparticles were compared, namely amorphous calcium phosphate (ACP) nano-spheres (diameter: 9-13 nm) and poorly crystalline apatite (PCA) nano-needles (30-50 nm x 2-4 nm) that closely resemble bone apatite. CaP particles were spin-coated onto titanium discs and implants; they were evaluated in cultured mouse calvarial osteoblasts, as well as after implantation in rabbit femurs. A significant dependence of CaP coatings was observed in osteoblast-related gene expression (Runx2, Col1a1 and Spp1). Specifically, the PCA group presented an up-regulation of the osteospecific genes, while the ACP group suppressed the Runx2 and Col1a1 expression when compared to blank titanium substrates. Both the ACP and PCA groups presented a more than three-fold increase of calcium deposition, as suggested by Alizarin red staining. The removal torque results implied a slight tendency in favour of the PCA group. Different forms of CaP nanostructures presented different biologic differences; the obtained information can be used to optimize surface coatings on biomaterials. © 2013 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: The purpose of this study was to evaluate the surfaces of commercially pure titanium (cp Ti) implants modified by laser beam (LS), without and with hydroxyapatite deposition by the biomimetic method (HAB), without (HAB) and with thermal treatment (HABT), and compare them with implants with surfaces modified by acid treatment (AS) and with machined surfaces (MS), employing topographical and biomechanics analysis. Methods: Forty-five rabbits received 75 implants. After 30, 60, and 90 days, the implants were removed by reverse torque and the surfaces were topographically analyzed. Results: At 30 days, statistically significant difference (P < 0.05) was observed among all the surfaces and the MS, between HAB/HABT and AS and between HAB and LS. At 60 days, the reverse torque of LS, HAB, HABT, and AS differed significantly from MS. At 90 days, difference was observed between HAB and MS. The microtopographic analysis revealed statistical difference between the roughness of LS, HAB, and HABT when compared with AS and MS. Conclusions: It was concluded that the implants LS, HAB, and HABT presented physicochemical and topographical properties superior to those of AS and MS and favored the osseointegration process in the shorter periods. In addition, HAB showed the best results when compared with other surfaces. © 2012 John Wiley & Sons A/S.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated 3 implant surfaces in a dog model: (1) resorbable-blasting media + acid-etched (RBMa), alumina-blasting + acid-etching (AB/AE), and AB/AE + RBMa (hybrid). All of the surfaces were minimally rough, and Ca and P were present for the RBMa and hybrid surfaces. Following 2 weeks in vivo, no significant differences were observed for torque, bone-to-implant contact, and bone-area fraction occupied measurements. Newly formed woven bone was observed in proximity with all surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral phase of dentin is located primarily within collagen fibrils. During development, bone or dentin collagen fibrils are formed first and then water within the fibril is replaced with apatite crystallites. Mineralized collagen contains very little water. During dentin bonding, acid-etching of mineralized dentin solubilizes the mineral crystallites and replaces them with water. During the infiltration phase of dentin bonding, adhesive comonomers are supposed to replace all of the collagen water with adhesive monomers that are then polymerized into copolymers. The authors of a recently published review suggested that dental monomers were too large to enter and displace water from collagen fibrils. If that were true, the endogenous proteases bound to dentin collagen could be responsible for unimpeded collagen degradation that is responsible for the poor durability of resin-dentin bonds. The current work studied the size-exclusion characteristics of dentin collagen, using a gel-filtration-like column chromatography technique, using dentin powder instead of Sephadex. The elution volumes of test molecules, including adhesive monomers, revealed that adhesive monomers smaller than ∼1000 Da can freely diffuse into collagen water, while molecules of 10,000 Da begin to be excluded, and bovine serum albumin (66,000 Da) was fully excluded. These results validate the concept that dental monomers can permeate between collagen molecules during infiltration by etch-and-rinse adhesives in water-saturated matrices. © 2013 Acta Materialia Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the transdentinal cytotoxicity of experimental adhesive systems (EASs) with different hydrophilicity and dentin saturation solutions on odontoblast-like cells. One hundred 0.4-mm-thick dentin discs were mounted in in vitro pulp chambers and assigned to 10 groups. MDPC-23 cells were seeded onto the pulpal side of the discs, incubated for 48 h. The EASs with increasing hydrophilicity (R1, R2, R3 and R4) were applied to the occlusal side after etching and saturation of etched dentin with water or ethanol. R0 (no adhesive) served as controls. R1 is a non-solvated hydrophobic blend, R2 is similar to a simplified etch-and-rinse adhesive system and R3 and R4 are similar to self-etching adhesives. After 24 h, cell metabolism was evaluated by MTT assay (n = 8 discs) and cell morphology was examined by SEM (n = 2 discs). Type of cell death was identified by flow cytometry and the degree of monomer conversion (%DC) was determined by infrared spectroscopy (FTIR) after 10 s or 20 s of photoactivation. Data were analyzed by the Kruskal-Wallis and Mann-Whitney tests (α = 0.05). Dentin saturation with ethanol resulted in higher necrotic cell death ratios for R2, R3 and R4 compared with water saturation, although R2 and R3 induced higher SDH production. Photoactivation for 20 s significantly improved the %DC of all EASs compared with 10 s. A significant positive correlation was observed between the degree of hydrophilicity and %DC. In conclusion, except for R1, dentin saturation with ethanol increased the cytotoxicity of EASs, as expressed by the induction of necrotic cell death. © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The global radiation incident on a tilted surfaces consists of components direct, diffuse and reflected from the ground. On a hourly database, the direct radiation can be calculated by geometric projections (ratio of the incidence angle to the solar zenith angle). The reflected radiation has a small effect on calculations and may be calculated with an isotropic model. Both components presents dependence of measures in incidence or horizontal surface. The great difficulty is to evaluate the diffuse radiation by variations of circumsolar, brightness horizontal, isotropic and anisotropic subcomponents. This study evaluated twenty models to estimate hourly diffuse radiation incident on tilted surfaces at 12.85° (latitude - 10°), 22.85° (latitude) and 32.85° (latitude + 10°) facing to North, under different cloudiness sky conditions, in Botucatu, São Paulo State, Brazil (22°53' S, 48°26' W and 786 m above the mean sea level). In contrast, models for estimating the diffuse component show major differences, which justify the validation for local calibrations. There is a decrease of the maximum total radiation scattered with increasing atmospheric transmissivity and inclination angle. The best results are obtained by anisotropic models: Ma and Iqbal, Hay, Reindl et al. and Willmott; isotropic: Badescu and Koronakis, and the Circumsolar model. The increase of the inclination angle allows for a reduction in the performance of statistical parametric models for estimating the hourly diffuse radiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the effect of final irrigation protocols (17% EDTA, BioPure MTAD, SmearClear, and QMiX) on microhardness and erosion of root canal dentin. Fifty roots were sectioned transversely at the cement-enamel junction and each root was sectioned horizontally into 4-mm-thick slices. The samples were divided into five groups (n=10) according to the final irrigation protocol: G1: distilled water (control group); G2: 17% EDTA; G3: BioPure MTAD; G4: SmearClear; and G5: QMiX. The dentin microhardness was then measured with a load of 25 g for 10 s. Initially, the reference microhardness values were obtained for the samples without any etching. The same samples were then submitted to the final irrigation protocols. A new measure was realized and the difference between before and after the procedures was the dentin microhardness reduction. In sequence, the specimens were submitted to SEM analysis to verify the dentinal erosion. The Kruskal Wallis and Dunn tests (α=5%) were used to compare the results. The dentin microhardness decreased for all final irrigation protocols. There was no significant difference between groups 2, 3, 4, and 5 (P>0.05), but this groups presented significant dentin microhardness reduction than G1 (P<0.05). In G2, occurred the highest incidence of dentinal erosion (P<0.05). 17% EDTA, BioPure MTAD, SmearClear, and QMiX promoted significant dentin microhardness reduction. © 2013 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective The objective was to examine the effect of a solvent dimethyl sulfoxide (DMSO) on resin-dentin bond durability, as well as potential functional mechanisms behind the effect. Methods Microtensile bond strength (μTBS) was evaluated in extracted human teeth in two separate experiments. Dentin specimens were acid-etched and assigned to pre-treatment with 0.5 mM (0.004%) DMSO as additional primer for 30 s and to controls with water pre-treatment. Two-step etch-and-rinse adhesive (Scotchbond 1XT, 3M ESPE) was applied and resin composite build-ups were created. Specimens were immediately tested for μTBS or stored in artificial saliva for 6 and 12 months prior to testing. Additional immediate and 6-month specimens were examined for interfacial nanoleakage analysis under SEM. Matrix metalloproteinase (MMP) inhibition by DMSO was examined with gelatin zymography. Demineralized dentin disks were incubated in 100% DMSO to observe the optical clearing effect. Results The use of 0.5 mM DMSO had no effect on immediate bond strength or nanoleakage. In controls, μTBS decreased significantly after storage, but increased significantly in DMSO-treated group. The control group had significantly lower μTBS than DMSO-group after 6 and 12 months. DMSO also eliminated the increase in nanoleakage seen in controls. 5% and higher DMSO concentrations significantly inhibited the gelatinases. DMSO induced optical clearing effect demonstrating collagen dissociation. Significance DMSO as a solvent may be useful in improving the preservation of long-term dentin-adhesive bond strength. The effect may relate to dentinal enzyme inhibition or improved wetting of collagen by adhesives. The collagen dissociation required much higher DMSO concentrations than the 0.5 mM DMSO used for bonding. © 2013 Academy of Dental Materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tribocorrosion plays an important role in the lifetime of metallic implants. Once implanted, biomaterials are subjected to micro-movements in aggressive biological fluids. Titanium is widely used as an implant material because it spontaneously forms a compact and protective nanometric thick oxide layer, mainly TiO2, in ambient air. That layer provides good corrosion resistance, and very low toxicity, but its low wear resistance is a concern. In this work, an anodizing treatment was performed on commercial pure titanium to form a homogeneous thick oxide surface layer in order to provide bioactivity and improve the biological, chemical and mechanical properties. Anodizing was performed in an electrolyte containing β-glycerophosphate and calcium acetate. The influence of the calcium acetate content on the tribocorrosion behaviour of the anodized material was studied. The concentration of calcium acetate in the electrolyte was found to largely affect the crystallographic structure of the resulting oxide layer. Better tribocorrosion behaviour was noticed on increasing the calcium acetate concentration. © 2013 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Odontologia Restauradora - ICT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)