944 resultados para Cotranslational translocation
Resumo:
Innate immune responses against microorganisms may be mediated by Toll-like receptors (TLRs). Intestinal ischemia-reperfusion (i-I/R) leads to the translocation of bacteria and/or bacterial products such as endotoxin, which activate TLRs leading to acute intestinal and lung injury and inflammation observed upon gut trauma. Here, we investigated the role of TLR activation by using mice deficient for the common TLR adaptor protein myeloid differentiation factor 88 (MyD88) on local and remote inflammation following intestinal ischemia. Balb/c and MyD88(-/-) mice were subjected to occlusion of the superior mesenteric artery (45 min) followed by intestinal reperfusion (4 h). Acute neutrophil recruitment into the intestinal wall and the lung was significantly diminished in MyD88(-/-) after i-I/R, which was confirmed microscopically. Diminished neutrophil recruitment was accompanied with reduced concentration of TNF-alpha and IL-1 beta level. Furthermore, diminished microvascular leak and bacteremia were associated with enhanced survival of MyD88(-/-) mice. However, neither TNF-alpha nor IL-1 beta neutralization prevented neutrophil recruitment into the lung but attenuated intestinal inflammation upon i-I/R. In conclusion, our data demonstrate that disruption of the TLR/MyD88 pathway in mice attenuates acute intestinal and lung injury, inflammation, and endothelial damage allowing enhanced survival.
Resumo:
Background and purpose: The inflammation-resolving lipid mediator resolvin E1 (RvE1) effectively stops inflammation-induced bone loss in vivo in experimental periodontitis. It was of interest to determine whether RvE1 has direct actions on osteoclast (OC) development and bone resorption. Experimental approach: Primary OC cultures derived from mouse bone marrow were treated with RvE1 and analysed for OC differentiation, cell survival and bone substrate resorption. Receptor binding was measured using radiolabelled RvE1. Nuclear factor (NF)-kappa B activation and Akt phosphorylation were determined with western blotting. Lipid mediator production was assessed with liquid chromatography tandem mass spectrometry. Key results: OC growth and resorption pit formation were markedly decreased in the presence of RvE1. OC differentiation was inhibited by RvE1 as demonstrated by decreased number of multinuclear OC, a delay in the time course of OC development and attenuation of receptor activator of NF-kappa B ligand-induced nuclear translocation of the p50 subunit of NF-kappa B. OC survival and apoptosis were not altered by RvE1. Messenger RNA for both receptors of RvE1, ChemR23 and BLT(1) is expressed in OC cultures. Leukotriene B(4) (LTB(4)) competed with [(3)H] RvE1 binding on OC cell membrane preparations, and the LTB(4) antagonist U75302 prevented RvE1 inhibition of OC growth, indicating that BLT(1) mediates RvE1 actions on OC. Primary OC synthesized the RvE1 precursor 18R-hydroxy-eicosapentaenoic acid and LTB(4). Co-incubation of OC with peripheral blood neutrophils resulted in transcellular RvE1 biosynthesis. Conclusions and implications: These results indicate that RvE1 inhibits OC growth and bone resorption by interfering with OC differentiation. The bone-sparing actions of RvE1 are in addition to inflammation resolution, a direct action in bone remodelling.
Resumo:
The development of septic shock is a common and frequently lethal consequence of gram-negative infection. Mediators released by lung macrophages activated by bacterial products such as lipopolysaccharide (LPS) contribute to shock symptoms. We have shown that insulin downregulates LPS-induced TNF production by alveolar macrophages (AMs). In the present study, we investigated the effect of insulin on the LPS-induced production of nitric oxide (NO) and prostaglandin (PG)-E(2), on the expression of inducible nitric oxide synthase ( iNOS) and cyclooxygenase (COX)-2, and on nuclear factor kappa B (NF-kappa B) activation in AMs. Resident AMs from male Wistar rats were stimulated with LPS (100 ng/mL) for 30 minutes. Insulin (1 mU/mL) was added 10 min before LPS. Enzymes expression, NF-kappa B p65 activation and inhibitor of kappa B (I-kappa B) a phosphorylation were assessed by immunobloting; NO by Griess reaction and PGE(2) by enzyme immunoassay (EIA). LPS induced in AMs the expression of iNOS and COX-2 proteins and production of NO and PGE(2), and, in parallel, NF-kappa B p65 activation and cytoplasmic I-kappa B alpha phosphorylation. Administration of insulin before LPS suppressed the expression of iNOS and COX-2, of NO and PGE(2) production and Nuclear NF-kappa B p65 activation. Insulin also prevented cytoplasmic I-kappa Ba phosphorylation. These results show that in AMs stimulated by LPS, insulin prevents nuclear translocation of NF-kappa B, possibly by blocking I-kappa Ba degradation, and supresses the production of NO and PGE(2), two molecules that contribute to septic shock. Copyright (C) 2008 S. Karger AG, Basel.
Resumo:
Acute kidney injury (AKI) is an important clinical syndrome characterized by abnormalities in the hydroelectrolytic balance. Because of high rates of morbidity and mortality (from 15% to 60%) associated with AKI, the study of its pathophysiology is critical in searching for clinical targets and therapeutic strategies. Severe sepsis is the major cause of AKI. The host response to sepsis involves an inflammatory response, whereby the pathogen is initially sensed by innate immune receptors (pattern recognition receptors [PRRs]). When it persists, this immune response leads to secretion of proinflammatory products that induce organ dysfunction such as renal failure and consequently increased mortality. Moreover, the injured tissue releases molecules resulting from extracellular matrix degradation or dying cells that function as alarmines, which are recognized by PRR in the absence of pathogens in a second wave of injury. Toll-like receptors (TLRs) and NOD-like receptors (NLRs) are the best characterized PRRs. They are expressed in many cell types and throughout the nephron. Their activation leads to translocation of nuclear factors and synthesis of proinflammatory cytokines and chemokines. TLRs` signaling primes the cells for a robust inflammatory response dependent on NLRs; the interaction of TLRs and NLRs gives rise to the multiprotein complex known as the inflammasome, which in turn activates secretion of mature interleukin 1 beta and interleukin 18. Experimental data show that innate immune receptors, the inflammasome components, and proinflammatory cytokines play crucial roles not only in sepsis, but also in organ-induced dysfunction, especially in the kidneys. In this review, we discuss the significance of the innate immune receptors in the development of acute renal injury secondary to sepsis.
Resumo:
Over the past 20 y, the hormone melatonin was found to be produced in extrapineal sites, including cells of the immune system. Despite the increasing data regarding the biological effects of melatonin on the regulation of the immune system, the effect of this molecule on T cell survival remains largely unknown. Activation-induced cell death plays a critical role in the maintenance of the homeostasis of the immune system by eliminating self-reactive or chronically stimulated T cells. Because activated T cells not only synthesize melatonin but also respond to it, we investigated whether melatonin could modulate activation-induced cell death. We found that melatonin protects human and murine CD4(+) T cells from apoptosis by inhibiting CD95 ligand mRNA and protein upregulation in response to TCR/CD3 stimulation. This inhibition is a result of the interference with calmodulin/calcineurin activation of NFAT that prevents the translocation of NFAT to the nucleus. Accordingly, melatonin has no effect on T cells transfected with a constitutively active form of NFAT capable of migrating to the nucleus and transactivating target genes in the absence of calcineurin activity. Our results revealed a novel biochemical pathway that regulates the expression of CD95 ligand and potentially other downstream targets of NFAT activation. The Journal of Immunology, 2010, 184: 3487-3494.
Resumo:
The process of host cell invasion by Trypanosoma cruzi depends on parasite energy. What source of energy is used for that event is not known. To address this and other questions related to T. cruzi energy requirements and cell invasion, we analyzed metacyclic trypomastigote forms of the phylogenetically distant CL and G strains. For both strains, the nutritional stress experienced by cells starved for 24, 36, or 48 h in phosphate-buffered saline reduced the ATP content and the ability of the parasite to invade HeLa cells proportionally to the starvation time. Inhibition of ATP production by treating parasites with rotenone plus antimycin A also diminished the infectivity. Nutrient depletion did not alter the expression of gp82, the surface molecule that mediates CL strain internalization, but increased the expression of gp90, the negative regulator of cell invasion, in the G strain. When L-proline was given to metacyclic forms starved for 36 h, the ATP levels were restored to those of nonstarved controls for both strains. Glucose had no such effect, although this carbohydrate and L-proline were transported in similar fashions. Recovery of infectivity promoted by L-proline treatment of starved parasites was restricted to the CL strain. The profile of restoration of ATP content and gp82-mediated invasion capacity by L-proline treatment of starved Y-strain parasites was similar to that of the CL strain, whereas the Dm28 and Dm30 strains, whose infectivity is downregulated by gp90, behaved like the G strain. L-Proline was also found to increase the ability of the CL strain to traverse a gastric mucin layer, a property important for the establishment of T. cruzi infection by the oral route. Efficient translocation of parasites through gastric mucin toward the target epithelial cells in the stomach mucosa is an essential requirement for subsequent cell invasion. By relying on these closely associated ATP-driven processes, the metacyclic trypomastigotes effectively accomplish their internalization.
Resumo:
It has been shown previously that the snake venom metalloprotease-disintegrin jararhagin stimulates cell migration and cytoskeletal rearrangement, independently of its effects on cellular adhesion but possibly associated with the activation of small GTP-binding proteins from the Rho family [Costa, E.P., Santos, M.F., 2004. Toxicon 44(8), 861-870.] Here we show that jararhagin stimulates spreading, actin dynamics and neurite outgrowth in neuroblastoma cells, and that this effect is accompanied by the translocation of the Rac1 small GTPase to the membrane fraction, suggesting its activation. Stimulation of neurite outgrowth was observed within minutes and was dependent on the proteolytic activity of the toxin. These results suggest that jararhagin may stimulate neuronal differentiation, being potential tool for neuronal regeneration studies. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Cytochrome c exhibits two positively charged sites: site A containing lysine residues with high pK(a) values and site L containing ionizable groups with pK(aobs),values around 7.0. This protein feature implies that cytochrome c can participate in the fusion of mitochondria and have its detachment from the inner membrane regulated by cell acidosis and alkalosis. In this study, We demonstrated that both horse and tuna cytochrome c exhibited two types of binding to inner mitochondrial membranes that contributed to respiration: a high-affinity and low-efficiency pi-I-independent binding (microscopic dissociation constant K(sapp2), similar to 10 nM) and a low-affinity and high-efficiency pH-dependent binding that for horse cytochrome c had a pK(a) of similar to 6.7. For tuna cytochrome c (Lys22 and His33 replaced with Asn and Trp, respectively), the effect of pH on K(sapp1), was less striking than for the horse heme protein, and both tuna and horse cytochrome c had closed K(sapp1) values at pH 7.2 and 6.2, respectively. Recombinant mutated cytochrome c H26N and H33N also restored the respiration of the cytochrome c-depleted mitoplast in a pH-dependent manner. Consistently, the detachment of cytochrome c from nondepleted mitoplasts was favored by alkalinization, suggesting that site Lionization influences the participation of cytochrome c in the respiratory chain and apoptosis.
Resumo:
Initially identified in yeast, the exosome has emerged as a central component of the RNA maturation and degradation machinery both in Archaea and eukaryotes. Here we describe a series of high-resolution structures of the RNase PH ring from the Pyrococcus abyssi exosome, one of them containing three 10-mer RNA strands within the exosome catalytic chamber, and report additional nucleotide interactions involving positions N5 and N7. Residues from all three Rrp41-Rrp42 heterodimers interact with a single RNA molecule, providing evidence for the functional relevance of exosome ring-like assembly in RNA processivity. Furthermore, an ADP-bound structure showed a rearrangement of nucleotide interactions at site N1, suggesting a rationale for the elimination of nucleoside diphosphate after catalysis. In combination with RNA degradation assays performed with mutants of key amino acid residues, the structural data presented here provide support for a model of exosome-mediated RNA degradation that integrates the events involving catalytic cleavage, product elimination, and RNA translocation. Finally, comparisons between the archaeal and human exosome structures provide a possible explanation for the eukaryotic exosome inability to catalyze phosphate-dependent RNA degradation.
Resumo:
A large majority of the 1000-1500 proteins in the mitochondria are encoded by the nuclear genome, and therefore, they are translated in the cytosol in the form and contain signals to enable the import of proteins into the organelle. The TOM complex is the major translocase of the outer membrane responsible for preprotein translocation. It consists of a general import pore complex and two membrane import receptors, Tom20 and Tom70. Tom70 contains a characteristic TPR domain, which is a docking site for the Hsp70 and Hsp90 chaperones. These chaperones are involved in protecting cytosolic preproteins from aggregation and then in delivering them to the TOM complex. Although highly significant, many aspects of the interaction between Tom70 and Hsp90 are still uncertain. Thus, we used biophysical tools to study the interaction between the C-terminal domain of Hsp90 (C-Hsp90), which contains the EEVD motif that binds to TPR domains, and the cytosolic fragment of Tom70. The results indicate a stoichiometry of binding of one monomer of Tom70 per dimer of C-Hsp90 with a K(D) of 360 30 nM, and the stoichiometry and thermodynamic parameters obtained suggested that Tom70 presents a different mechanism of interaction with Hsp90 when compared with other TPR proteins investigated. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
o Pontal de Tapes está inserido dentro da Planície Costeira do Rio Grande do Sul e localiza-se ao noroeste da Laguna dos Patos. Até a década de 70, a área caracterizava-se por uma dinâmica regida pela ação dos ventos, das ondas e da corrente lagunar, compondo um ambiente caracterizado pela existência de banhados, dunas, bancos de areia, entre outras feições. Com a introdução de bosques de pinus, o Pontal passou por uma drástica alteração nos seus padrões eólicos de transporte e acumulação de areia. Este fato levou a área a uma nova dinâmica eólica e, por sua vez, morfológica. Neste estudo passamos a avaliar as conseqüências deste novo cenário. Para tal, monitoramos durante aproximadamente um ano (05.06.02 a 04.06.03) os parâmetros climáticos, bem como algumas dunas da área. A partir daí detectou-se a existência de quatro processos atuantes no ambiente: translado, bloqueio, captura e carreamento, sendo que os três últimos passaram a dominar o modelado do ambiente pós-pinus. A atuação desta nova dinâmica causou profundas alterações ao Pontal, como o desaparecimento de banhados e a descaracterização do sistema dunário.
Resumo:
Disease, injury, and age problems compromise human quality of life and continuously motivate the search for new and more efficacious therapeutic approaches. The field of Tissue Regeneration and Engineering has greatly evolved over the last years, mainly due to the combination of the important advances verified in Biomaterials Science and Engineering with those of Cell and Molecular Biology. In particular, a new and promising area arose – Nanomedicine – that takes advantage of the extremely small size and especial chemical and physical properties of Nanomaterials, offering powerful tools for health improvement. Research on Stem Cells, the self-renewing progenitors of body tissues, is also challenging to the medical and scientific communities, being expectable the appearance of new and exciting stem cell-based therapies in the next years. The control of cell behavior (namely, of cell proliferation and differentiation) is of key importance in devising strategies for Tissue Regeneration and Engineering. Cytokines, growth factors, transcription factors and other signaling molecules, most of them proteins, have been identified and found to regulate and support tissue development and regeneration. However, the application of these molecules in long-term regenerative processes requires their continuous presence at high concentrations as they usually present short half-lives at physiological conditions and may be rapidly cleared from the body. Alternatively, genes encoding such proteins can be introduced inside cells and be expressed using cell’s machinery, allowing an extended and more sustained production of the protein of interest (gene therapy). Genetic engineering of stem cells is particularly attractive because of their self-renewal capability and differentiation potential. For Tissue Regeneration and Engineering purposes, the patient’s own stem cells can be genetically engineered in vitro and, after, introduced in the body (with or without a scaffold) where they will not only modulate the behavior of native cells (stem cell-mediated gene therapy), but also directly participate in tissue repair. Cells can be genetically engineered using viral and non-viral systems. Viruses, as a result of millions of years of evolution, are very effective for the delivery of genes in several types of cells, including cells from primary sources. However, the risks associated with their use (like infection and immunogenic reactions) are driving the search for non-viral systems that will efficiently deliver genetic material into cells. Among them, chemical methods that are promising and being investigated use cationic molecules as carriers for DNA. In this case, gene delivery and gene expression level remain relatively low when primary cells are used. The main goal of this thesis was to develop and assess the in vitro potential of polyamidoamine (PAMAM) dendrimers based carriers to deliver genes to mesenchymal stem cells (MSCs). PAMAM dendrimers are monodispersive, hyperbranched and nanospherical molecules presenting unique characteristics that make them very attractive vehicles for both drug and gene delivery. Although they have been explored for gene delivery in a wide range of cell lines, the interaction and the usefulness of these molecules in the delivery of genes to MSCs remains a field to be explored. Adult MSCs were chosen for the studies due to their potential biomedical applications (they are considered multipotent cells) and because they present several advantages over embryonic stem cells, such as easy accessibility and the inexistence of ethical restrictions to their use. This thesis is divided in 5 interconnected chapters. Chapter I provides an overview of the current literature concerning the various non-viral systems investigated for gene delivery in MSCs. Attention is devoted to physical methods, as well as to chemical methods that make use of polymers (natural and synthetic), liposomes, and inorganic nanoparticles as gene delivery vectors. Also, it summarizes the current applications of genetically engineered mesenchymal stem cells using non-viral systems in regenerative medicine, with special focus on bone tissue regeneration. In Chapter II, the potential of native PAMAM dendrimers with amine termini to transfect MSCs is evaluated. The level of transfection achieved with the dendrimers is, in a first step, studied using a plasmid DNA (pDNA) encoding for the β-galactosidase reporter gene. The effect of dendrimer’s generation, cell passage number, and N:P ratio (where N= number of primary amines in the dendrimer; P= number of phosphate groups in the pDNA backbone) on the level of transfection is evaluated, being the values always very low. In a second step, a pDNA encoding for bone morphogenetic protein-2, a protein that is known for its role in MSCs proliferation and differentiation, is used. The BMP-2 content produced by transfected cells is evaluated by an ELISA assay and its effect on the osteogenic markers is analyzed through several classical assays including alkaline phosphatase activity (an early marker of osteogenesis), osteocalcin production, calcium deposition and mineralized nodules formation (late osteogenesis markers). Results show that a low transfection level is enough to induce in vitro osteogenic differentiation in MSCs. Next, from Chapter III to Chapter V, studies are shown where several strategies are adopted to change the interaction of PAMAM dendrimers with MSCs cell membrane and, as a consequence, to enhance the levels of gene delivery. In Chapter III, generations 5 and 6 of PAMAM dendrimers are surface functionalized with arginine-glycine-aspartic acid (RGD) containing peptides – experiments with dendrimers conjugated to 4, 8 and 16 RGD units were performed. The underlying concept is that by including the RGD integrin-binding motif in the design of the vectors and by forming RGD clusters, the level of transfection will increase as MSCs highly express integrins at their surface. Results show that cellular uptake of functionalized dendrimers and gene expression is enhanced in comparison with the native dendrimers. Furthermore, gene expression is dependent on both the electrostatic interaction established between the dendrimer moiety and the cell surface and the nanocluster RGD density. In Chapter IV, a new family of gene delivery vectors is synthesized consisting of a PAMAM dendrimer (generation 5) core randomly linked at the periphery to alkyl hydrophobic chains that vary in length and number. Herein, the idea is to take advantage of both the cationic nature of the dendrimer and the capacity of lipids to interact with biological membranes. These new vectors show a remarkable capacity for internalizing pDNA, being this effect positively correlated with the –CH2– content present in the hydrophobic corona. Gene expression is also greatly enhanced using the new vectors but, in this case, the higher efficiency is shown by the vectors containing the smallest hydrophobic chains. Finally, chapter V reports the synthesis, characterization and evaluation of novel gene delivery vectors based on PAMAM dendrimers (generation 5) conjugated to peptides with high affinity for MSCs membrane binding - for comparison, experiments are also done with a peptide with low affinity binding properties. These systems present low cytotoxicity and transfection efficiencies superior to those of native dendrimers and partially degraded dendrimers (Superfect®, a commercial product). Furthermore, with this biomimetic approach, the process of gene delivery is shown to be cell surface receptor-mediated. Overall, results show the potential of PAMAM dendrimers to be used, as such or modified, in Tissue Regeneration and Engineering. To our knowledge, this is the first time that PAMAM dendrimers are studied as gene delivery vehicles in this context and using, as target, a cell type with clinical relevancy. It is shown that the cationic nature of PAMAM dendrimers with amine termini can be synergistically combined with surface engineering approaches, which will ultimately result in suitable interactions with the cytoplasmic membrane and enhanced pDNA cellular entry and gene expression. Nevertheless, the quantity of pDNA detected inside cell nucleus is always very small when compared with the bigger amount reaching cytoplasm (accumulation of pDNA is evident in the perinuclear region), suggesting that the main barrier to transfection is the nuclear membrane. Future work can then be envisaged based on the versatility of these systems as biomedical molecular materials, such as the conjugation of PAMAM dendrimers to molecules able to bind nuclear membrane receptors and to promote nuclear translocation.
Resumo:
RESUMO: Objetivo: Tem sido demonstrado que a icterícia obstrutiva provoca depressão do sistema imunológico, mudança no padrão de colonização bacteriana dos intestinos e passagem de bactérias da luz intestinal para a circulação porta e sistêmica. Estudo experimental em ratos procurou observar a possibilidade de translocação bacteriana para os pulmões após a ligadura do colédoco. Método: Foram utilizados 20 ratos Wistar pesando de 178 a 215g, separados aleatoriamente em dois grupos iguais. Nos ratos do grupo I foi feita a ligadura do colédoco e nos do grupo II apenas a manipulação do colédoco com pinça atraumática (sham operation). No sétimo dia de observação os animais foram mortos com superdose de anestésico, sangue foi colhido para dosagem de bilirrubinas e os pulmões ressecados sob condições assépticas. Metade de cada pulmão foi homogeneizada e semeada em meios de cultura ágar McConkey e ágar sangue. A outra metade serviu para exame histopatológico –coloração hematoxilina e eosina. Os dados foram analisados pelo teste t, com significância 0,05. Resultados: revelaram bilirrubina total em média 18,7±3,6 no grupo I e 0,7±0,2 no grupo II. No grupo I foram isoladas colônias de Klebsiela sp nos pulmões de 30% dos animais e E. coli em 20%, e os escores histopatológicos atingiram a média 6,2±2,08. No grupo II não foram detectadas bactérias nos pulmões e os escores do exame histopatológico atingiram 1,8±1,16. A diferença dos dados analisados mostrou-se significativa (p<0,05). Conclusões: Concluiu-se que a icterícia obstrutiva por ligadura do colédoco em ratos provocou translocação de germes Gram-negativos para os pulmões e resultou em alterações histopatológicas significativas.
Resumo:
Para avaliar os efeitos de diferentes tempos de pré-condicionamento isquêmico (IPC) em translocação bacteriana intestinal (BT). MÉTODOS: Trinta ratos Wistar pesando 280 ± 27g foram divididos em cinco grupos. No grupo IV (n = 6), a laparotomia foi realizada e a artéria mesentérica superior foi obstruído por um microclampe atraumática durante 30 minutos. Nos quatro grupos de pré-condicionamento (n = 6 cada) antes dos 30 minutos de isquemia-reperfusão (I / R), os ratos foram submetidos a IPC para duas, cinco, dez e 15 minutos, seguido pelo mesmo momento da reperfusão. A fim de avaliar se o tempo de pré-condicionamento influenciaram o surgimento de translocação bacteriana, as amostras de nódulos linfáticos mesentéricos, fígado e baço foram colhidas em condições estéreis, 24 horas após os procedimentos para a quantificação de unidades formadoras de colónias de bactérias por grama de tecido (CFU / g). O sangue foi recolhido para a medição de citoquinas. RESULTADOS: No grupo I / R, o total de CFU / g em gânglios linfáticos mesentéricos, baço, fígado, bem como o soro de TNF-a, IL-1A e IL-6 foram significativamente mais elevados do que nos outros grupos (p <0,05). Pré-condicionamento por 15 minutos significativamente atenuada BT e citocinas séricas quando comparado a outros períodos de pré-condicionamento (p <0,05). CONCLUSÃO: Nossos dados sugerem que o pré-condicionamento como um fator chave para reduzir a translocação bacteriana intestinal em I / R. Numa escala de dois a 15 minutos, o melhor tempo de pré-condicionamento isquémico pela atenuação da translocação bacteriana foi de 15 minutos
Resumo:
The program PROBIODIESEL from the Ministry of Science and Technology has substantially increased glycerine, obtained as a sub-product of biodiesel production process, making it necessary to seek alternatives for the use of this co-product. On the other hand, herbicides although play a role of fundamental importance in the agricultural production system in force, have been under growing concern among the various segments of society because of their potential environmental risk. In this work, we used glycerin in microemulsion systems for application of herbicides, to improve efficiency and lower environmental pollution caused by the loss of those products to the environment. To obtain the systems of microemulsinados were used Unitol L90 NP and Renex 40 as surfactants, butanol as co-surfactant, coconut oil as oil phase and aqueous phase as we used solutions of glycerin + water. Through the determination of phase diagrams, the microemulsion region was found in the system E (L90 Unitol, coconut oil and glycerin + water 1:1). Three points were chosen to the aqueous phase rich in characterization and application in the solubilization of glyphosate and atrazine. Three experiments were performed in Horta, Department of Plant Sciences, Plant Science Sector, UFERSA, Mossoró-RN. The first experiment was conducted in randomized complete blocks with 20 treatments and four replications. The treatments consisted of five doses of the herbicide glyphosate (0.0, 0.45, 0.9, 1.35 and 1.8 L ha-1) diluted with four sauces: C1, C2, C3 (microemulsions) and C4 (water). The phytotoxicity of Brachiaria brizantha was measured at 7, 14, 28 and 60 DAA (days after application). At 60 DAA, we evaluated the biomass of plants. The second experiment was developed in randomized complete blocks with 20 treatments and four repetitions. The treatments consisted of five doses of the herbicide atrazine (0.0, 0.4, 0.8, 1.6 and 2.4 L ha-1) diluted with four sauces: C1, C2, C3 (microemulsions) and C4 (water). The phytotoxicity on Zea mays and Talinum paniculatum was evaluated at 2, 7, 20 DAA. The experiment III was developed in randomized complete blocks with 16 treatments and three repetitions. The treatments consisted of 16 combinations among the constituents of the microemulsion: Unitol L90 surfactant (0.0, 1.66, 5.0, 15 %) and glycerin (0.0, 4.44, 13.33 and 40.0 %). The phytotoxicity on Zea mays was evaluated at 1, 7 and 14 DAA. At 14 DAA, we evaluated the biomass of plants. The control plants using the microemulsions was lower than in the water due to the poisoning caused by the initial microemulsions in the leaves of the plants, a fact that hinders the absorption and translocation of the herbicide. There was no toxicity in Zea mays plants caused by the herbicide, however, were highly intoxicated by microemulsions. T. paniculatum was better controlled in spraying with the microemulsions, regardless of the dose of the herbicide. The glycerine did not cause plant damage. Higher poisoning the plants are caused by tensoactive Unitol L90 and higher rates occur with the use of higher concentrations of surfactant and glycerin, or microemulsion. The microemulsions used hampered the action of glyphosate in controlling B. brizantha and caused severe poisoning in corn, and these poisonings attributed mainly to the action of surfactant