912 resultados para Colour and image sensitive detectors


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors would like to thank the participants of the Aberdeen 1936 Birth Cohort (ABC36). Image acquisition and image analysis for ABC36 were funded by the Alzheimer’s Research Trust (now Alzheimer’s Research UK). A.D.M., C.J.M., S.S., L.J.W., and R.T.S. have received grants from: Chief Scientist Office, Department of Health, Scottish Government; Biotechnology and Biological Sciences Research Council

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors would like to thank the participants of the Aberdeen 1936 Birth Cohort (ABC36). Image acquisition and image analysis for ABC36 were funded by the Alzheimer’s Research Trust (now Alzheimer’s Research UK). A.D.M., C.J.M., S.S., L.J.W., and R.T.S. have received grants from: Chief Scientist Office, Department of Health, Scottish Government; Biotechnology and Biological Sciences Research Council

Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-ray computed tomography (CT) imaging constitutes one of the most widely used diagnostic tools in radiology today with nearly 85 million CT examinations performed in the U.S in 2011. CT imparts a relatively high amount of radiation dose to the patient compared to other x-ray imaging modalities and as a result of this fact, coupled with its popularity, CT is currently the single largest source of medical radiation exposure to the U.S. population. For this reason, there is a critical need to optimize CT examinations such that the dose is minimized while the quality of the CT images is not degraded. This optimization can be difficult to achieve due to the relationship between dose and image quality. All things being held equal, reducing the dose degrades image quality and can impact the diagnostic value of the CT examination.

A recent push from the medical and scientific community towards using lower doses has spawned new dose reduction technologies such as automatic exposure control (i.e., tube current modulation) and iterative reconstruction algorithms. In theory, these technologies could allow for scanning at reduced doses while maintaining the image quality of the exam at an acceptable level. Therefore, there is a scientific need to establish the dose reduction potential of these new technologies in an objective and rigorous manner. Establishing these dose reduction potentials requires precise and clinically relevant metrics of CT image quality, as well as practical and efficient methodologies to measure such metrics on real CT systems. The currently established methodologies for assessing CT image quality are not appropriate to assess modern CT scanners that have implemented those aforementioned dose reduction technologies.

Thus the purpose of this doctoral project was to develop, assess, and implement new phantoms, image quality metrics, analysis techniques, and modeling tools that are appropriate for image quality assessment of modern clinical CT systems. The project developed image quality assessment methods in the context of three distinct paradigms, (a) uniform phantoms, (b) textured phantoms, and (c) clinical images.

The work in this dissertation used the “task-based” definition of image quality. That is, image quality was broadly defined as the effectiveness by which an image can be used for its intended task. Under this definition, any assessment of image quality requires three components: (1) A well defined imaging task (e.g., detection of subtle lesions), (2) an “observer” to perform the task (e.g., a radiologists or a detection algorithm), and (3) a way to measure the observer’s performance in completing the task at hand (e.g., detection sensitivity/specificity).

First, this task-based image quality paradigm was implemented using a novel multi-sized phantom platform (with uniform background) developed specifically to assess modern CT systems (Mercury Phantom, v3.0, Duke University). A comprehensive evaluation was performed on a state-of-the-art CT system (SOMATOM Definition Force, Siemens Healthcare) in terms of noise, resolution, and detectability as a function of patient size, dose, tube energy (i.e., kVp), automatic exposure control, and reconstruction algorithm (i.e., Filtered Back-Projection– FPB vs Advanced Modeled Iterative Reconstruction– ADMIRE). A mathematical observer model (i.e., computer detection algorithm) was implemented and used as the basis of image quality comparisons. It was found that image quality increased with increasing dose and decreasing phantom size. The CT system exhibited nonlinear noise and resolution properties, especially at very low-doses, large phantom sizes, and for low-contrast objects. Objective image quality metrics generally increased with increasing dose and ADMIRE strength, and with decreasing phantom size. The ADMIRE algorithm could offer comparable image quality at reduced doses or improved image quality at the same dose (increase in detectability index by up to 163% depending on iterative strength). The use of automatic exposure control resulted in more consistent image quality with changing phantom size.

Based on those results, the dose reduction potential of ADMIRE was further assessed specifically for the task of detecting small (<=6 mm) low-contrast (<=20 HU) lesions. A new low-contrast detectability phantom (with uniform background) was designed and fabricated using a multi-material 3D printer. The phantom was imaged at multiple dose levels and images were reconstructed with FBP and ADMIRE. Human perception experiments were performed to measure the detection accuracy from FBP and ADMIRE images. It was found that ADMIRE had equivalent performance to FBP at 56% less dose.

Using the same image data as the previous study, a number of different mathematical observer models were implemented to assess which models would result in image quality metrics that best correlated with human detection performance. The models included naïve simple metrics of image quality such as contrast-to-noise ratio (CNR) and more sophisticated observer models such as the non-prewhitening matched filter observer model family and the channelized Hotelling observer model family. It was found that non-prewhitening matched filter observers and the channelized Hotelling observers both correlated strongly with human performance. Conversely, CNR was found to not correlate strongly with human performance, especially when comparing different reconstruction algorithms.

The uniform background phantoms used in the previous studies provided a good first-order approximation of image quality. However, due to their simplicity and due to the complexity of iterative reconstruction algorithms, it is possible that such phantoms are not fully adequate to assess the clinical impact of iterative algorithms because patient images obviously do not have smooth uniform backgrounds. To test this hypothesis, two textured phantoms (classified as gross texture and fine texture) and a uniform phantom of similar size were built and imaged on a SOMATOM Flash scanner (Siemens Healthcare). Images were reconstructed using FBP and a Sinogram Affirmed Iterative Reconstruction (SAFIRE). Using an image subtraction technique, quantum noise was measured in all images of each phantom. It was found that in FBP, the noise was independent of the background (textured vs uniform). However, for SAFIRE, noise increased by up to 44% in the textured phantoms compared to the uniform phantom. As a result, the noise reduction from SAFIRE was found to be up to 66% in the uniform phantom but as low as 29% in the textured phantoms. Based on this result, it clear that further investigation was needed into to understand the impact that background texture has on image quality when iterative reconstruction algorithms are used.

To further investigate this phenomenon with more realistic textures, two anthropomorphic textured phantoms were designed to mimic lung vasculature and fatty soft tissue texture. The phantoms (along with a corresponding uniform phantom) were fabricated with a multi-material 3D printer and imaged on the SOMATOM Flash scanner. Scans were repeated a total of 50 times in order to get ensemble statistics of the noise. A novel method of estimating the noise power spectrum (NPS) from irregularly shaped ROIs was developed. It was found that SAFIRE images had highly locally non-stationary noise patterns with pixels near edges having higher noise than pixels in more uniform regions. Compared to FBP, SAFIRE images had 60% less noise on average in uniform regions for edge pixels, noise was between 20% higher and 40% lower. The noise texture (i.e., NPS) was also highly dependent on the background texture for SAFIRE. Therefore, it was concluded that quantum noise properties in the uniform phantoms are not representative of those in patients for iterative reconstruction algorithms and texture should be considered when assessing image quality of iterative algorithms.

The move beyond just assessing noise properties in textured phantoms towards assessing detectability, a series of new phantoms were designed specifically to measure low-contrast detectability in the presence of background texture. The textures used were optimized to match the texture in the liver regions actual patient CT images using a genetic algorithm. The so called “Clustured Lumpy Background” texture synthesis framework was used to generate the modeled texture. Three textured phantoms and a corresponding uniform phantom were fabricated with a multi-material 3D printer and imaged on the SOMATOM Flash scanner. Images were reconstructed with FBP and SAFIRE and analyzed using a multi-slice channelized Hotelling observer to measure detectability and the dose reduction potential of SAFIRE based on the uniform and textured phantoms. It was found that at the same dose, the improvement in detectability from SAFIRE (compared to FBP) was higher when measured in a uniform phantom compared to textured phantoms.

The final trajectory of this project aimed at developing methods to mathematically model lesions, as a means to help assess image quality directly from patient images. The mathematical modeling framework is first presented. The models describe a lesion’s morphology in terms of size, shape, contrast, and edge profile as an analytical equation. The models can be voxelized and inserted into patient images to create so-called “hybrid” images. These hybrid images can then be used to assess detectability or estimability with the advantage that the ground truth of the lesion morphology and location is known exactly. Based on this framework, a series of liver lesions, lung nodules, and kidney stones were modeled based on images of real lesions. The lesion models were virtually inserted into patient images to create a database of hybrid images to go along with the original database of real lesion images. ROI images from each database were assessed by radiologists in a blinded fashion to determine the realism of the hybrid images. It was found that the radiologists could not readily distinguish between real and virtual lesion images (area under the ROC curve was 0.55). This study provided evidence that the proposed mathematical lesion modeling framework could produce reasonably realistic lesion images.

Based on that result, two studies were conducted which demonstrated the utility of the lesion models. The first study used the modeling framework as a measurement tool to determine how dose and reconstruction algorithm affected the quantitative analysis of liver lesions, lung nodules, and renal stones in terms of their size, shape, attenuation, edge profile, and texture features. The same database of real lesion images used in the previous study was used for this study. That database contained images of the same patient at 2 dose levels (50% and 100%) along with 3 reconstruction algorithms from a GE 750HD CT system (GE Healthcare). The algorithms in question were FBP, Adaptive Statistical Iterative Reconstruction (ASiR), and Model-Based Iterative Reconstruction (MBIR). A total of 23 quantitative features were extracted from the lesions under each condition. It was found that both dose and reconstruction algorithm had a statistically significant effect on the feature measurements. In particular, radiation dose affected five, three, and four of the 23 features (related to lesion size, conspicuity, and pixel-value distribution) for liver lesions, lung nodules, and renal stones, respectively. MBIR significantly affected 9, 11, and 15 of the 23 features (including size, attenuation, and texture features) for liver lesions, lung nodules, and renal stones, respectively. Lesion texture was not significantly affected by radiation dose.

The second study demonstrating the utility of the lesion modeling framework focused on assessing detectability of very low-contrast liver lesions in abdominal imaging. Specifically, detectability was assessed as a function of dose and reconstruction algorithm. As part of a parallel clinical trial, images from 21 patients were collected at 6 dose levels per patient on a SOMATOM Flash scanner. Subtle liver lesion models (contrast = -15 HU) were inserted into the raw projection data from the patient scans. The projections were then reconstructed with FBP and SAFIRE (strength 5). Also, lesion-less images were reconstructed. Noise, contrast, CNR, and detectability index of an observer model (non-prewhitening matched filter) were assessed. It was found that SAFIRE reduced noise by 52%, reduced contrast by 12%, increased CNR by 87%. and increased detectability index by 65% compared to FBP. Further, a 2AFC human perception experiment was performed to assess the dose reduction potential of SAFIRE, which was found to be 22% compared to the standard of care dose.

In conclusion, this dissertation provides to the scientific community a series of new methodologies, phantoms, analysis techniques, and modeling tools that can be used to rigorously assess image quality from modern CT systems. Specifically, methods to properly evaluate iterative reconstruction have been developed and are expected to aid in the safe clinical implementation of dose reduction technologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The absence of rapid, low cost and highly sensitive biodetection platform has hindered the implementation of next generation cheap and early stage clinical or home based point-of-care diagnostics. Label-free optical biosensing with high sensitivity, throughput, compactness, and low cost, plays an important role to resolve these diagnostic challenges and pushes the detection limit down to single molecule. Optical nanostructures, specifically the resonant waveguide grating (RWG) and nano-ribbon cavity based biodetection are promising in this context. The main element of this dissertation is design, fabrication and characterization of RWG sensors for different spectral regions (e.g. visible, near infrared) for use in label-free optical biosensing and also to explore different RWG parameters to maximize sensitivity and increase detection accuracy. Design and fabrication of the waveguide embedded resonant nano-cavity are also studied. Multi-parametric analyses were done using customized optical simulator to understand the operational principle of these sensors and more important the relationship between the physical design parameters and sensor sensitivities. Silicon nitride (SixNy) is a useful waveguide material because of its wide transparency across the whole infrared, visible and part of UV spectrum, and comparatively higher refractive index than glass substrate. SixNy based RWGs on glass substrate are designed and fabricated applying both electron beam lithography and low cost nano-imprint lithography techniques. A Chromium hard mask aided nano-fabrication technique is developed for making very high aspect ratio optical nano-structure on glass substrate. An aspect ratio of 10 for very narrow (~60 nm wide) grating lines is achieved which is the highest presented so far. The fabricated RWG sensors are characterized for both bulk (183.3 nm/RIU) and surface sensitivity (0.21nm/nm-layer), and then used for successful detection of Immunoglobulin-G (IgG) antibodies and antigen (~1μg/ml) both in buffer and serum. Widely used optical biosensors like surface plasmon resonance and optical microcavities are limited in the separation of bulk response from the surface binding events which is crucial for ultralow biosensing application with thermal or other perturbations. A RWG based dual resonance approach is proposed and verified by controlled experiments for separating the response of bulk and surface sensitivity. The dual resonance approach gives sensitivity ratio of 9.4 whereas the competitive polarization based approach can offer only 2.5. The improved performance of the dual resonance approach would help reducing probability of false reading in precise bio-assay experiments where thermal variations are probable like portable diagnostics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic-rich sediments (sapropels) deposited in the Mediterranean are presumed to have formed during periods of increased productivity, and/or deep water oxygen depletion, possibly including the development of sulfidic conditions (euxinia). Geochemical redox proxies (Re, Mo, Mo isotopes, V, Fe/Al, and multiple S isotopes) in 8 sapropels from the Pleistocene confirm water column euxinic conditions of varying intensity during sapropel deposition. These same proxies indicate an oxic origin for hemipelagic sediments deposited between sapropel-forming episodes. In one intensively sampled sapropel, deposited between 1.450 and 1.458 Ma, changing concentrations of organic carbon, Ba, Re, Mo, V, and Fe/Al track one another closely, reflecting coupling between water column euxinia and biological productivity. Multiple S isotope data from this sapropel suggest that the redox interface where oxidative sulfur cycling occurred was present in the sediments during hemipelagic sedimentation, but moved into the water column during sapropel deposition. Molybdenum isotopes of these 8 sapropels encompass a range of values (d98Mo = +0.2 to +1.7), but are all 98Mo-depleted relative to seawater (d98Mo = +2.3 per mil), suggesting that quantitative removal of Mo did not occur. This finding contrasts with modern Black Sea sediments. In general, Re/Mo ratios in sapropels are greater than in modern seawater, implying that the water column was not sufficiently sulfidic during sapropel-forming episodes to induce complete removal of both these elements. Surprisingly, the heaviest d98Mo values are found within hemipelagic sediments. Very few of the hemipelagic samples preserve the negative d98Mo values commonly associated with modern oxic marine sediments. Many of the hemipelagic samples also contained higher concentrations of Re and Mo than are common in oxic sediments. These features may be attributable to diffusion from the sapropels of a 98Mo-enriched component into the hemipelagic sediments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolution through time of trace element contents (Sr, Mg, Mn, and Fe) of sediments at Sites 549 and 550 is similar to that of previously studied oceanic sites. A comparison with some North Atlantic sites and with outcrops of the Gubbio section (Italy) allowed us to show that 1. A negative correlation between Sr and Mg contents, generally characteristic of pelagic carbonate having undergone diagenesis, is confirmed. 2. Magnesium diagenesis occurs over a relatively short time and is sensitive to the sedimentation rate of each individual time period, whereas Sr diagenesis is a long-term phenomenon and is sensitive to the overall average sedimentation rate at the site. Strontium loss by sediments is related to sediment age (i.e., residence time of sediments in a given diagenetic environment) and could be a rough method of dating individual sediment layers. 3. The nature of the seafloor (oceanic or continental) does not appear to play an important part in the content of Fe and Mn in sediments. Their distribution depends more on mid-oceanic ridge activity, paleodepth (through mediation of CaCO3 dissolution and environment), and distance of the site from the ridge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sedimentary proxies used to reconstruct marine productivity suffer from variable preservation and are sensitive to factors other than productivity. Therefore, proxy calibration is warranted. Here we map the spatial patterns of two paleoproductivity proxies, biogenic opal and barium fluxes, from a set of core-top sediments recovered in the Subarctic North Pacific. Comparisons of the proxy data with independent estimates of primary and export production, surface water macronutrient concentrations and biological pCO2 drawdown indicate that neither proxy shows a significant correlation with primary or export productivity for the entire region. Biogenic opal fluxes, when corrected for preservation using 230Th-normalized accumulation rates, show a good correlation with primary productivity along the volcanic arcs (tau = 0.71, p = 0.0024) and with export productivity throughout the western Subarctic North Pacific (tau = 0.71, p = 0.0107). Moderate and good correlations of biogenic barium flux with export production (tau = 0.57, p = 0.0022) and with surface water silicate concentrations (tau = 0.70, p = 0.0002) are observed for the central and eastern Subarctic North Pacific. For reasons unknown, however, no correlation is found in the western Subarctic North Pacific between biogenic barium flux and the reference data. Nonetheless, we show that barite saturation, uncertainty in the lithogenic barium corrections and problems with the reference datasets are not responsible for the lack of a significant correlation between biogenic barium flux and the reference data. Further studies evaluating the factors controlling the variability of the biogenic constituents in the sediments are desirable in this region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cadwaladerite (Al(OH)2Cl∙4H2O) collected from Cerro Pintados, Chile described by Gordon in 1941 is designated as “doubtful” by the IMA. Material collected from the same locality in 2015 resembling the description of cadwaladerite gave a powder XRD pattern similar to lesukite (Al2(OH)5Cl∙2H2O). However, Gordon provided no X-ray data for his material from Cerro Pintados. In order to determine whether cadwaladerite and lesukite are the same mineral species, measurements were made on a suite of samples from various localities. A portion of the material collected by Gordon in 1941 was also obtained from the Mineralogical Museum of Harvard University. Type material of lesukite from a fumarolic environment at the Tolbachik Fissure in Kamchatka, Russia was obtained as well as lesukite from the Maria Mine, Chile (Arica Province) and a previously undescribed locality for lesukite (Barranaca del Sulfato, Mejillones Peninsula, Antofagasta Province). All samples are yellow to yellow-orange in colour and all exhibit small cubic crystals (up to 50µm), even Gordon’s cadwaladerite which was thought to be amorphous. The Chilean samples are all associated with halite and sometimes with anhydrite. These five samples were studied by SEM, FTIR, powder XRD, and Raman spectroscopy. A ratio of Al:Cl less than or equal to 1.3:1 was observed for all the samples, including measurements made on lesukite from the Russian locality Vergasova et al. studied in 1997, and determined to have a 2:1 ratio. SEM-EDS analyses also show all samples to have minor iron substitution, as well as copper substitution in two samples. FTIR spectra are very similar for all samples. Raman spectroscopy done on both samples collected in Cerro Pintados and the Russian lesukite gave similar spectra. Powder XRD analyses on all samples showed spectra identified to be lesukite, including Gordon’s cadwaladerite. Crystal cell parameters calculated from powder XRD ranged from 19.778Å to 19.878Å. Results using modern instrumental techniques confirm Gordon’s cadwaladerite, collected in 1939 and described in 1941, and lesukite are the same mineral species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intention of this thesis, “Ceramics in Britain (1840–90): Meanings and Metaphors” is to present new approaches for interpreting ceramics in nineteenth-century Britain by situating, problematizing, and contextualizing pottery and porcelain in the popular debates of the day within the methodologies of material culture, design, cultural and art histories. I ask how did ceramics—portable, functional, and often decorative objects—contribute to shaping modes of experiences? Crockery, tableware and blue-white-porcelain, admittedly largely mediated in texts and paintings, are at the centre of this research to examine how they imposed symbolism and influenced the engagement of their subjects beyond their intended meanings and functions. This thesis tracks a common rhetoric shared by writers and artists across genres and understood by readers and viewers: crockery in the cupboard, on the mantel, the table or the floor were popular motifs exemplifying class, gender, character, etiquette, and taste. This thesis also seeks to map ceramics’ relations with other objects and people depicted. Their meanings and metaphors changed, depending on their exchange with other objects in the room and who uses them. The conventions of representing ceramics dictated a particular grammar that writers and artists used, critiqued, discarded or personalized. The examination of ceramics mediated in text and image especially in comparison with extant objects invites a deeper probing of both material culture and artistic practice, which helps to situate the agency of the ceramic objects themselves. Also this thesis, in attempt to explore new methodological approaches for ceramic studies, examines the social life of the mid-Victorian relief-moulded “Minster” Jug in the Gardiner Museum in Toronto. The product originating in Staffordshire in 1843 and exported to the colonies holds significance due to its multiple life histories. Viewing the “Minster” through the lenses of curator, collector, consumer, and critic its layered lives unfold to reveal the protocols of museum praxis as well as important aspects of mid-nineteenth-century British society related to design reform, gender, imperialism and consumption patterns. This thesis contends that the British experienced ceramics in sometimes unexpected ways, unrelated to their original purpose, such as tools of violence or containers of solace, and transformative fantasy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 2011 I travelled to three of the ‘Seven Sister’ states of old Assam, Nagaland, Meghalaya & Assam. My journey to this remote and politically sensitive region, bordering Chinese occupied Tibet, Bangladesh and Myanmar was prompted by my father’s experiences in the region during WW2 in the Burma Campaign and brought into sharp relief on-going themes in my work, the impact the past has on the present, the relationship of time and place, identity and memory and the transcultural experiences caused by war, colonisation and migration. The drawings I made on location, the objects I collected and the notes and photographs I took formed the basis of the bookwork: NAGALAND borders boundaries belonging. When making the finished work the material quality of the object and the processes by which it was made become very important. The historical resonance of the medium and the time consuming nature of the process reflect the embedding of form and idea, and paid homage to the material culture of the Naga hill tribes. The bookwork was hand-bound, handset and printed by letterpress. Some spreads were printed in 6 colours and the book took over a year to produce. I see my practice as echoing that of generations of Lady travellers; embracing the need to journey, be in a liminal space, to have a plan but not be afraid to divert from it. To be alone, take a sketchbook and make images is, for me, the definition of the itinerant illustrator; one who travels widely in geographic space, visual forms and ideas, in order to get lost and find the unlooked for.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper synthesizes and discusses the spatial and temporal patterns of archaeological sites in Ireland, spanning the Neolithic period and the Bronze Age transition (4300–1900 cal BC), in order to explore the timing and implications of the main changes that occurred in the archaeological record of that period. Large amounts of new data are sourced from unpublished developer-led excavations and combined with national archives, published excavations and online databases. Bayesian radiocarbon models and context- and sample-sensitive summed radiocarbon probabilities are used to examine the dataset. The study captures the scale and timing of the initial expansion of Early Neolithic settlement and the ensuing attenuation of all such activity—an apparent boom-and-bust cycle. The Late Neolithic and Chalcolithic periods are characterised by a resurgence and diversification of activity. Contextualisation and spatial analysis of radiocarbon data reveals finer-scale patterning than is usually possible with summed-probability approaches: the boom-and-bust models of prehistoric populations may, in fact, be a misinterpretation of more subtle demographic changes occurring at the same time as cultural change and attendant differences in the archaeological record.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The photocatalytic activity of self-cleaning glass is assessed using a resazurin (Rz) photocatalyst activity indicator ink, i.e. Rz paii, via both the rate of change in the colour of the ink (blue to pink), R(Abs), and the rate of change in the fluorescence intensity, R(Fl), (λ(excitation) = 593 nm; λ(emission) = 639 nm) of the ink. In both cases the kinetics are zero order. Additional work with a range of glass samples of different photocatalytic activity reveal R(Abs) is directly related to R(Fl), thereby showing that the latter, like the former, can be used to provide a measure of the photocatalytic activity of the sample under test. The measured value of R(Fl) is found to be the same for 5 pieces of, otherwise identical, selfcleaning glass with: black, red, blue, yellow and no coloured tape stuck to their backs, which demonstrates that R(Fl) measurements can be used to measure photocatalytic activity under conditions of high colour and opacity under which R(Abs) cannot be measured. The relevance of this novel, fluorescence-based paii to the assessment of the activity of highly coloured, opaque photocatalytic samples, such as paints and tiles, is discussed briefly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The androgen receptor (AR) is expressed in 60-80% of breast cancers (BC) across all molecular phenotypes, with a higher incidence in oestrogen receptor positive (ER+) BC compared to ER negative tumours. In ER+ disease, AR-expression has been linked to endocrine resistance which might be reversed with combined treatment targeting ER and AR. In triple negative BCs (TNBC), preclinical and clinical investigations have described a subset of patients that express the AR and are sensitive to androgen blockade, providing a novel therapeutic target. Enzalutamide, a potent 2nd generation anti-androgen, has demonstrated substantial preclinical and clinical anti-tumour activity in AR+ breast cancer. Short-term preoperative window of opportunity studies are a validated strategy for novel treatments to provide proof-of-concept and define the most appropriate patient population by directly assessing treatment effects in tumour tissue before and after treatment. The ARB study aims to assess the anti-tumour effects of enzalutamide in early ER+ breast cancer and TNBC, to identify the optimal target population for further studies and to directly explore the biologic effects of enzalutamide on BC and stromal cells. Methods: ARB is an international, investigator sponsored WOO phase II study in women with newly diagnosed primary ER+ BC or AR+ TNBC of ≥ 1cm. The study has two cohorts. In the ER+ cohort, postmenopausal patients will be randomised 2:1 to receive either enzalutamide (160mg OD) plus exemestane (50mg OD) or exemestane (25mg OD). In the TNBC cohort, AR+ will receive single agent treatment with enzalutamide (160mg OD). Study treatment is planned for 15–29 days, followed by surgery or neo-adjuvant therapy. Tissue and blood samples are collected before treatment and on the last day of study treatment. The primary endpoint is inhibition of tumour-cell proliferation, as measured by change in Ki67 expression, determined centrally by 2 investigators. Secondary endpoints include induction of apoptosis (Caspase3), circulating hormone levels and safety. ARB aims to recruit ≈235 patients from ≈40 sites in the UK, Germany, Spain and USA. The study is open to recruitment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[ES]This paper describes an analysis performed for facial description in static images and video streams. The still image context is first analyzed in order to decide the optimal classifier configuration for each problem: gender recognition, race classification, and glasses and moustache presence. These results are later applied to significant samples which are automatically extracted in real-time from video streams achieving promising results in the facial description of 70 individuals by means of gender, race and the presence of glasses and moustache.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIRES, Kelson R. T. ; ARAÚJO, Hélder J. ; MEDEIROS, Adelardo A. D. . Plane Detection from Monocular Image Sequences. In: VISUALIZATION, IMAGING AND IMAGE PROCESSING, 2008, Palma de Mallorca, Spain. Proceedings..., Palma de Mallorca: VIIP, 2008