866 resultados para Characteristic Initial Value Problem
Resumo:
Kimmeridgian-Tithonian red marly limestones and Berriasian white limestones were recovered at Site 534 of DSDP Leg 76 in the western North Atlantic. These yielded a well-defined magnetostratigraphy with the characteristic magnetization carried by hematite in red sediments and magnetite in white sediments. The polarity sequence is correlated to the magnetostratigraphy of Kimmeridgian-Tithonian-Berriasian pelagic carbonates of northern Italy and southern Spain, allowing precise biostratigraphic age correlations. The Berriasian/Tithonian boundary occurs within the upper half of Core 90, the late Tithonian/early Tithonian boundary at the base of Core 96, and the Tithonian/Kimmeridgian boundary at the top of Core 102. Correlations are also made to M-16 through M-22 of the marine magnetic anomaly M-sequence. Poor recovery and irregular magnetic properties of the underlying Kimmeridgian-Oxfordian-Callovian marls and claystones prevented determination of a polarity sequence, but the entire interval has mixed polarity. Valanginian gray marly limestones have very weak magnetizations, and preliminary results are inadequate to determine the polarity pattern.
Resumo:
Composition, grain-size distribution, and areal extent of Recent sediments from the Northern Adriatic Sea along the Istrian coast have been studied. Thirty one stations in four sections vertical to the coast were investigated; for comparison 58 samples from five small bays were also analyzed. Biogenic carbonate sediments are deposited on the shallow North Adriatic shelf off the Istrian coast. Only at a greater distance from the coast are these carbonate sediments being mixed with siliceous material brought in by the Alpine rivers Po, Adige, and Brenta. Graphical analysis of grain-size distribution curves shows a sediment composition of normally three, and only in the most seaward area, of four major constituents. Constituent 1 represents the washed-in terrestrial material of clay size (Terra Rossa) from the Istrian coastal area. Constituent 2 consists of fine to medium sand. Constituent 3 contains the heterogeneous biogenic material. Crushing by organisms and by sediment eaters reduces the coarse biogenic material into small pieces generating constituent 2. Between these two constituents there is a dynamic equilibrium. Depending upon where the equilibrium is, between the extremes of production and crushing, the resulting constituent 2 is finer or coarser. Constituent 4 is composed of the fine sandy material from the Alpine rivers. In the most seaward area constituents 2 and 4 are mixed. The total carbonate content of the samples depends on the distance from the coast. In the near coastal area in high energy environments, the carbonate content is about 80 %. At a distance of 2 to 3 km from the coast there is a carbonate minimum because of the higher rate of sedimentation of clay-sized terrestrial, noncarbonate material at extremely low energy environments. In an area between 5 and 20 km off the coast, the carbonate content is about 75 %. More than 20 km from the shore, the carbonate content diminishes rapidly to values of about 30 % through mixing with siliceous material from the Alpine rivers. The carbonate content of the individual fractions increases with increasing grain-size to a maximum of about 90 % within the coarse sand fractions. Beyond 20 km from the coast the samples show a carbonate minimum of about 13 % within the sand-size classes from 1.5 to 0.7 zeta¬? through mixing with siliceous material from the alpine rivers. By means of grain-size distribution and carbonate content, four sediment zones parallel to the coast were separated. Genetically they are closely connected with the zonation of the benthic fauna. Two cores show a characteristic vertical distribution of the sediment. The surface zone is inversely graded, that means the coarse fractions are at the top and the fine fractions are at the bottom. This is the effect of crushing of the biogenic material produced at the surface by predatory organisms and by sediment eaters. lt is proposed that at a depth of about 30 cm a chemical solution process begins which leads to diminution of the original sediment from a fine to medium sand to a silt. The carbonate content decreases from about 75 % at the surface to 65 % at a depth of 100 cm. The increase of the noncarbonate components by 10 % corresponds to a decrease in the initial amount of sediment (CaC03=75 %) by roughly 30 % through solution. With increasing depth the carbonate content of the individual fractions becomes more and more uniform. At the surface the variation is from 30 % to 90 %, at the bottom it varies only between 50 % and 75 %. Comparable investigations of small-bay sediments showed a c1ear dependence of sediment/faunal zonation from the energy of the environment. The investigations show that the composition and three-dimensional distribution of the Istrian coastal sediments can not be predicted only from one or a few measurable factors. Sedimentation and syngenetic changes must be considered as a complex interaction between external factors and the actions of producing and destroying organisms that are in dynamic equilibrium. The results obtained from investigations of these recent sediments may be of value for interpreting fossil sediments only with strong limitations.
Resumo:
Mineralogical and oxygen isotopic analyses of samples from Deep Sea Drilling Project Sites 477, 481, and 477 in the Guaymas Basin indicate the existence of two distinct hydrothermal systems. In the first, at Sites 481 and 478, hot dolerite sills intruded into highly porous hemipelagic siliceous mudstones that were moderately rich in organic matter, thermally altered the adjacent sediments, and expelled hydrothermal pore fluids. The second, at Site 477 and active at present, is most probably caused by a recent igneous intrusion forming a magma chamber at shallow depth. In the first hydrothermal system, the main thermal reactions above and below the sills are dissolution of opal-A and formation of quartz, either directly or through opal-CT; formation of smectite; formation of analcime only above the sills; dissolution and recrystallization of calcite and occasional formation of dolomite or protodolomite. The d18O values of the hydrothermally altered sediments range from 9.9 to 12.2 per mil (SMOW). The d18O values of recrystallized calcites above the first sill complex, Site 481, indicate temperatures of 140° to 170°C. No fluid recharge is required in this system. The thickness of the sill complexes and the sequence and depth of intrusion into the sediment column determine the thickness of the alteration zones, which ranges from 2 or 3 to approximately 50 meters. Generally, the hydrothermally altered zone is thicker above than below the sill. In the second type, the sediments are extensively recrystallized. The characteristic greenschist-facies mineral assemblage of quartz-albite-chlorite-epidote predominates. Considerable amounts of pyrite, pyrrhotite, and sphene are also present. The lowest d18O value of the greenschist facies rocks is 6.6 per mil, and the highest d18O value of the associated pore fluids is +1.38 per mil (SMOW). The paragenesis and the oxygen isotopes of individual phases indicate alteration temperatures of 300 ± 50°C. On the basis of the oxygen isotopes of the solids and associated fluids, it is concluded that recharge of fluids is required. The water/rock ratio in wt.% is moderate, approximately 2/1 to 3/1 - higher than the calculated water/rock ratio of the hydrothermal system at the East Pacific Rise, 21 °N.
Resumo:
40Ar-39Ar dating of a high-MgO bronzite andesite from near the top of basement drilled at Site 458 shows the characteristic symptoms of artificially disturbed samples - i.e., an inverse staircase-type age spectrum, approximate linearity on an isochron plot, and concordance between total fusion age and isochron age. From conclusions based on other artificially disturbed samples (Ozima et al., 1979), we suggest that the reference isochron age (33.6 Ma) approximates the age of the sample. A basalt from deeper in Hole 458 gives an isochron age of 19.1 ± 0.2 Ma, which is slightly younger than the plateau age of 21.4 ± 1.0 Ma. Both ages are, however, considerably younger than the age of fossils in the overlying sediments (30 - 34 Ma). The age discrepancy may be explained if the 40Ar-39Ar age represents the age of secondary minerals, which formed later. No useful age data were obtained from a basalt sample recovered from Hole 459B.
Resumo:
This paper uses firm-level data to examine the impact of foreign chemical safety regulations such as RoHS and REACH on the production costs and export performance of firms in Malaysia and Vietnam. This paper also investigates the role of global value chains in enhancing the likelihood that a firm complies with RoHS and REACH. We find that in addition to the initial setup costs for compliance, EU RoHS (REACH) implementation imposes on firms additional variable production costs by requiring additional labor and capital expenditures of around 57% (73%) of variable costs. We also find that compliance with RoHS and REACH significantly increases the probability of export and that compliance with EU RoHS and REACH helps firms enter a greater variety of countries. Furthermore, firms participating in global value chains have higher compliance with RoHS and REACH regulations, regardless of whether the firm is directly exporting, when the firm operates in upstream or downstream industries of the countries' supply chain.
Resumo:
Under the 12th International Conference on Building Materials and Components is inserted this communication related to the field of management of those assets that constitute the Spanish Cultural Heritage and maintenance. This work is related to the field of management of those assets that constitute the Spanish Cultural Heritage which share an artistic or historical background. The conservation and maintenance become a social demand necessary for the preservation of public values, requiring the investment of necessary resources. The legal protection involves a number of obligations and rights to ensure the conservation and heritage protection. The duty of maintenance and upkeep exceeds the useful life the property that must endure more for their cultural value for its usability. The establishment of the necessary conditions to prevent deterioration and precise in order to fulfill its social function, seeking to prolong the life of the asset, preserving their physical integrity and its ability to convey the values protected. This obligation implies a substantial financial effort to the holder of the property, either public or private entity, addressing a problem of economic sustainability. Economic exploitation, with the aim of contributing to their well-maintained, is sometimes the best way to get resources. The work will include different lines of research with the following objectives. - Establishment of processes for assessing total costs over the building life cycle (LCC), during the planning stages or maintenance budgets to determine the most advantageous operating system. - Relationship between the value of property and maintenance costs, and establishing a sensitivity analysis.
Resumo:
The twentieth century brought a new sensibility characterized by the discredit of cartesian rationality and the weakening of universal truths, related with aesthetic values as order, proportion and harmony. In the middle of the century, theorists such as Theodor Adorno, Rudolf Arnheim and Anton Ehrenzweig warned about the transformation developed by the artistic field. Contemporary aesthetics seemed to have a new goal: to deny the idea of art as an organized, finished and coherent structure. The order had lost its privileged position. Disorder, probability, arbitrariness, accidentality, randomness, chaos, fragmentation, indeterminacy... Gradually new terms were coined by aesthetic criticism to explain what had been happening since the beginning of the century. The first essays on the matter sought to provide new interpretative models based on, among other arguments, the phenomenology of perception, the recent discoveries of quantum mechanics, the deeper layers of the psyche or the information theories. Overall, were worthy attempts to give theoretical content to a situation as obvious as devoid of founding charter. Finally, in 1962, Umberto Eco brought together all this efforts by proposing a single theoretical frame in his book Opera Aperta. According to his point of view, all of the aesthetic production of twentieth century had a characteristic in common: its capacity to express multiplicity. For this reason, he considered that the nature of contemporary art was, above all, ambiguous. The aim of this research is to clarify the consequences of the incorporation of ambiguity in architectural theoretical discourse. We should start making an accurate analysis of this concept. However, this task is quite difficult because ambiguity does not allow itself to be clearly defined. This concept has the disadvantage that its signifier is as imprecise as its signified. In addition, the negative connotations that ambiguity still has outside the aesthetic field, stigmatizes this term and makes its use problematic. Another problem of ambiguity is that the contemporary subject is able to locate it in all situations. This means that in addition to distinguish ambiguity in contemporary productions, so does in works belonging to remote ages and styles. For that reason, it could be said that everything is ambiguous. And that’s correct, because somehow ambiguity is present in any creation of the imperfect human being. However, as Eco, Arnheim and Ehrenzweig pointed out, there are two major differences between current and past contexts. One affects the subject and the other the object. First, it’s the contemporary subject, and no other, who has acquired the ability to value and assimilate ambiguity. Secondly, ambiguity was an unexpected aesthetic result in former periods, while in contemporary object it has been codified and is deliberately present. In any case, as Eco did, we consider appropriate the use of the term ambiguity to refer to the contemporary aesthetic field. Any other term with more specific meaning would only show partial and limited aspects of a situation quite complex and difficult to diagnose. Opposed to what normally might be expected, in this case ambiguity is the term that fits better due to its particular lack of specificity. In fact, this lack of specificity is what allows to assign a dynamic condition to the idea of ambiguity that in other terms would hardly be operative. Thus, instead of trying to define the idea of ambiguity, we will analyze how it has evolved and its consequences in architectural discipline. Instead of trying to define what it is, we will examine what its presence has supposed in each moment. We will deal with ambiguity as a constant presence that has always been latent in architectural production but whose nature has been modified over time. Eco, in the mid-twentieth century, discerned between classical ambiguity and contemporary ambiguity. Currently, half a century later, the challenge is to discern whether the idea of ambiguity has remained unchanged or have suffered a new transformation. What this research will demonstrate is that it’s possible to detect a new transformation that has much to do with the cultural and aesthetic context of last decades: the transition from modernism to postmodernism. This assumption leads us to establish two different levels of contemporary ambiguity: each one related to one these periods. The first level of ambiguity is widely well-known since many years. Its main characteristics are a codified multiplicity, an interpretative freedom and an active subject who gives conclusion to an object that is incomplete or indefinite. This level of ambiguity is related to the idea of indeterminacy, concept successfully introduced into contemporary aesthetic language. The second level of ambiguity has been almost unnoticed for architectural criticism, although it has been identified and studied in other theoretical disciplines. Much of the work of Fredric Jameson and François Lyotard shows reasonable evidences that the aesthetic production of postmodernism has transcended modern ambiguity to reach a new level in which, despite of the existence of multiplicity, the interpretative freedom and the active subject have been questioned, and at last denied. In this period ambiguity seems to have reached a new level in which it’s no longer possible to obtain a conclusive and complete interpretation of the object because it has became an unreadable device. The postmodern production offers a kind of inaccessible multiplicity and its nature is deeply contradictory. This hypothetical transformation of the idea of ambiguity has an outstanding analogy with that shown in the poetic analysis made by William Empson, published in 1936 in his Seven Types of Ambiguity. Empson established different levels of ambiguity and classified them according to their poetic effect. This layout had an ascendant logic towards incoherence. In seventh level, where ambiguity is higher, he located the contradiction between irreconcilable opposites. It could be said that contradiction, once it undermines the coherence of the object, was the better way that contemporary aesthetics found to confirm the Hegelian judgment, according to which art would ultimately reject its capacity to express truth. Much of the transformation of architecture throughout last century is related to the active involvement of ambiguity in its theoretical discourse. In modern architecture ambiguity is present afterwards, in its critical review made by theoreticians like Colin Rowe, Manfredo Tafuri and Bruno Zevi. The publication of several studies about Mannerism in the forties and fifties rescued certain virtues of an historical style that had been undervalued due to its deviation from Renacentist canon. Rowe, Tafuri and Zevi, among others, pointed out the similarities between Mannerism and certain qualities of modern architecture, both devoted to break previous dogmas. The recovery of Mannerism allowed joining ambiguity and modernity for first time in the same sentence. In postmodernism, on the other hand, ambiguity is present ex-professo, developing a prominent role in the theoretical discourse of this period. The distance between its analytical identification and its operational use quickly disappeared because of structuralism, an analytical methodology with the aspiration of becoming a modus operandi. Under its influence, architecture began to be identified and studied as a language. Thus, postmodern theoretical project discerned between the components of architectural language and developed them separately. Consequently, there is not only one, but three projects related to postmodern contradiction: semantic project, syntactic project and pragmatic project. Leading these projects are those prominent architects whose work manifested an especial interest in exploring and developing the potential of the use of contradiction in architecture. Thus, Robert Venturi, Peter Eisenman and Rem Koolhaas were who established the main features through which architecture developed the dialectics of ambiguity, in its last and extreme level, as a theoretical project in each component of architectural language. Robert Venturi developed a new interpretation of architecture based on its semantic component, Peter Eisenman did the same with its syntactic component, and also did Rem Koolhaas with its pragmatic component. With this approach this research aims to establish a new reflection on the architectural transformation from modernity to postmodernity. Also, it can serve to light certain aspects still unaware that have shaped the architectural heritage of past decades, consequence of a fruitful relationship between architecture and ambiguity and its provocative consummation in a contradictio in terminis. Esta investigación centra su atención fundamentalmente sobre las repercusiones de la incorporación de la ambigüedad en forma de contradicción en el discurso arquitectónico postmoderno, a través de cada uno de sus tres proyectos teóricos. Está estructurada, por tanto, en torno a un capítulo principal titulado Dialéctica de la ambigüedad como proyecto teórico postmoderno, que se desglosa en tres, de títulos: Proyecto semántico. Robert Venturi; Proyecto sintáctico. Peter Eisenman; y Proyecto pragmático. Rem Koolhaas. El capítulo central se complementa con otros dos situados al inicio. El primero, titulado Dialéctica de la ambigüedad contemporánea. Una aproximación realiza un análisis cronológico de la evolución que ha experimentado la idea de la ambigüedad en la teoría estética del siglo XX, sin entrar aún en cuestiones arquitectónicas. El segundo, titulado Dialéctica de la ambigüedad como crítica del proyecto moderno se ocupa de examinar la paulatina incorporación de la ambigüedad en la revisión crítica de la modernidad, que sería de vital importancia para posibilitar su posterior introducción operativa en la postmodernidad. Un último capítulo, situado al final del texto, propone una serie de Proyecciones que, a tenor de lo analizado en los capítulos anteriores, tratan de establecer una relectura del contexto arquitectónico actual y su evolución posible, considerando, en todo momento, que la reflexión en torno a la ambigüedad todavía hoy permite vislumbrar nuevos horizontes discursivos. Cada doble página de la Tesis sintetiza la estructura tripartita del capítulo central y, a grandes rasgos, la principal herramienta metodológica utilizada en la investigación. De este modo, la triple vertiente semántica, sintáctica y pragmática con que se ha identificado al proyecto teórico postmoderno se reproduce aquí en una distribución específica de imágenes, notas a pie de página y cuerpo principal del texto. En la columna de la izquierda están colocadas las imágenes que acompañan al texto principal. Su distribución atiende a criterios estéticos y compositivos, cualificando, en la medida de lo posible, su condición semántica. A continuación, a su derecha, están colocadas las notas a pie de página. Su disposición es en columna y cada nota está colocada a la misma altura que su correspondiente llamada en el texto principal. Su distribución reglada, su valor como notación y su posible equiparación con una estructura profunda aluden a su condición sintáctica. Finalmente, el cuerpo principal del texto ocupa por completo la mitad derecha de cada doble página. Concebido como un relato continuo, sin apenas interrupciones, su papel como responsable de satisfacer las demandas discursivas que plantea una investigación doctoral está en correspondencia con su condición pragmática.
Resumo:
Esta memoria está basada en el crecimiento y caracterización de heteroestructuras Al(Ga)N/GaN y nanocolumnas ordenadas de GaN, y su aplicación en sensores químicos. El método de crecimiento ha sido la epitaxia de haces moleculares asistida por plasma (PAMBE). En el caso de las heteroestructuras Al(Ga)N/GaN, se han crecido barreras de distinto espesor y composición, desde AlN de 5 nm, hasta AlGaN de 35 nm. Además de una caracterización morfológica, estructural y eléctrica básica de las capas, también se han fabricado a partir de ellas dispositivos tipo HEMTs. La caracterización eléctrica de dichos dispositivos (carga y movilidad de en el canal bidimensional) indica que las mejores heteroestructuras son aquellas con un espesor de barrera intermedio (alrededor de 20 nm). Sin embargo, un objetivo importante de esta Tesis ha sido verificar las ventajas que podían tener los sensores basados en heteroestructuras AlN/GaN (frente a los típicos basados en AlGaN/GaN), con espesores de barrera muy finos (alrededor de 5 nm), ya que el canal de conducción que se modula por efecto de cambios químicos está más cerca de la superficie en donde ocurren dichos cambios químicos. De esta manera, se han utilizado los dispositivos tipo HEMTs como sensores químicos de pH (ISFETs), y se ha comprobado la mayor sensibilidad (variación de corriente frente a cambios de pH, Ids/pH) en los sensores basados en AlN/GaN frente a los basados en AlGaN/GaN. La mayor sensibilidad es incluso más patente en aplicaciones en las que no se utiliza un electrodo de referencia. Se han fabricado y caracterizado dispositivos ISFET similares utilizando capas compactas de InN. Estos sensores presentan peor estabilidad que los basados en Al(Ga)N/GaN, aunque la sensibilidad superficial al pH era la misma (Vgs/pH), y su sensibilidad en terminos de corriente de canal (Ids/pH) arroja valores intermedios entre los ISFET basados en AlN/GaN y los valores de los basados en AlGaN/GaN. Para continuar con la comparación entre dispositivos basados en Al(Ga)N/GaN, se fabricaron ISFETs con el área sensible más pequeña (35 x 35 m2), de tamaño similar a los dispositivos destinados a las medidas de actividad celular. Sometiendo los dispositivos a pulsos de voltaje en su área sensible, la respuesta de los dispositivos de AlN presentaron menor ruido que los basados en AlGaN. El ruido en la corriente para dispositivos de AlN, donde el encapsulado no ha sido optimizado, fue tan bajo como 8.9 nA (valor rms), y el ruido equivalente en el potencial superficial 38.7 V. Estos valores son más bajos que los encontrados en los dispositivos típicos para la detección de actividad celular (basados en Si), y del orden de los mejores resultados encontrados en la literatura sobre AlGaN/GaN. Desde el punto de vista de la caracterización electro-química de las superficies de GaN e InN, se ha determinado su punto isoeléctrico. Dicho valor no había sido reportado en la literatura hasta el momento. El valor, determinado por medidas de “streaming potential”, es de 4.4 y 4 respectivamente. Este valor es una importante característica a tener en cuenta en sensores, en inmovilización electrostática o en la litografía coloidal. Esta última técnica se discute en esta memoria, y se aplica en el último bloque de investigación de esta Tesis (i.e. crecimiento ordenado). El último apartado de resultados experimentales de esta Tesis analiza el crecimiento selectivo de nanocolumnas ordenadas de GaN por MBE, utilizando mascaras de Ti con nanoagujeros. Se ha estudiado como los distintos parámetros de crecimiento (i.e. flujos de los elementos Ga y N, temperatura de crecimiento y diseño de la máscara) afectan a la selectividad y a la morfología de las nanocolumnas. Se ha conseguido con éxito el crecimiento selectivo sobre pseudosustratos de GaN con distinta orientación cristalina o polaridad; templates de GaN(0001)/zafiro, GaN(0001)/AlN/Si, GaN(000-1)/Si y GaN(11-20)/zafiro. Se ha verificado experimentalmente la alta calidad cristalina de las nanocolumnas ordenadas, y su mayor estabilidad térmica comparada con las capas compactas del mismo material. Las nanocolumnas ordenadas de nitruros del grupo III tienen una clara aplicación en el campo de la optoelectrónica, principalmente para nanoemisores de luz blanca. Sin embargo, en esta Tesis se proponen como alternativa a la utilización de capas compactas o nanocolumnas auto-ensambladas en sensores. Las nanocolumnas auto-ensambladas de GaN, debido a su alta razón superficie/volumen, son muy prometedoras en el campo de los sensores, pero su amplia dispersión en dimensiones (altura y diámetro) supone un problema para el procesado y funcionamiento de dispositivos reales. En ese aspecto, las nanocolumnas ordenadas son más robustas y homogéneas, manteniendo una alta relación superficie/volumen. Como primer experimento en el ámbito de los sensores, se ha estudiado como se ve afectada la emisión de fotoluminiscencia de las NCs ordenadas al estar expuestas al aire o al vacio. Se observa una fuerte caída en la intensidad de la fotoluminiscencia cuando las nanocolumnas están expuestas al aire (probablemente por la foto-adsorción de oxigeno en la superficie), como ya había sido documentado anteriormente en nanocolumnas auto-ensambladas. Este experimento abre el camino para futuros sensores basados en nanocolumnas ordenadas. Abstract This manuscript deals with the growth and characterization of Al(Ga)N/GaN heterostructures and GaN ordered nanocolumns, and their application in chemical sensors. The growth technique has been the plasma-assisted molecular beam epitaxy (PAMBE). In the case of Al(Ga)N/GaN heterostructures, barriers of different thickness and composition, from AlN (5 nm) to AlGaN (35 nm) have been grown. Besides the basic morphological, structural and electrical characterization of the layers, HEMT devices have been fabricated based on these layers. The best electrical characteristics (larger carriers concentration and mobility in the two dimensional electron gas) are those in AlGaN/GaN heterostructures with a medium thickness (around 20 nm). However, one of the goals of this Thesis has been to verify the advantages that sensors based on AlN/GaN (thickness around 7 nm) have compared to standard AlGaN/GaN, because the conduction channel to be modulated by chemical changes is closer to the sensitive area. In this way, HEMT devices have been used as chemical pH sensors (ISFETs), and the higher sensitivity (conductance change related to pH changes, Ids/pH) of AlN/GaN based sensors has been proved. The higher sensibility is even more obvious in application without reference electrode. Similar ISFETs devices have been fabricated based on InN compact layers. These devices show a poor stability, but its surface sensitivity to pH (Vgs/pH) and its sensibility (Ids/pH) yield values between the corresponding ones of AlN/GaN and AlGaN/GaN heterostructures. In order to a further comparison between Al(Ga)N/GaN based devices, ISFETs with smaller sensitive area (35 x 35 m2), similar to the ones used in cellular activity record, were fabricated and characterized. When the devices are subjected to a voltage pulse through the sensitive area, the response of AlN based devices shows lower noise than the ones based on AlGaN. The noise in the current of such a AlN based device, where the encapsulation has not been optimized, is as low as 8.9 nA (rms value), and the equivalent noise to the surface potential is 38.7 V. These values are lower than the found in typical devices used for cellular activity recording (based on Si), and in the range of the best published results on AlGaN/GaN. From the point of view of the electrochemical characterization of GaN and InN surfaces, their isoelectric point has been experimentally determined. Such a value is the first time reported for GaN and InN surfaces. These values are determined by “streaming potential”, being pH 4.4 and 4, respectively. Isoelectric point value is an important characteristic in sensors, electrostatic immobilization or in colloidal lithography. In particular, colloidal lithography has been optimized in this Thesis for GaN surfaces, and applied in the last part of experimental results (i.e. ordered growth). The last block of this Thesis is focused on the selective area growth of GaN nanocolumns by MBE, using Ti masks decorated with nanoholes. The effect of the different growth parameters (Ga and N fluxes, growth temperature and mask design) is studied, in particular their impact in the selectivity and in the morphology of the nanocolumns. Selective area growth has been successful performed on GaN templates with different orientation or polarity; GaN(0001)/sapphire, GaN(0001)/AlN/Si, GaN(000- 1)/Si and GaN(11-20)/sapphire. Ordered nanocolumns exhibit a high crystal quality, and a higher thermal stability (lower thermal decomposition) than the compact layers of the same material. Ordered nanocolumns based on III nitrides have a clear application in optoelectronics, mainly for white light nanoemitters. However, this Thesis proposes them as an alternative to compact layers and self-assembled nanocolumns in sensor applications. Self-assembled GaN nanocolumns are very appealing for sensor applications, due to their large surface/volume ratio. However, their large dispersion in heights and diameters are a problem in terms of processing and operation of real devices. In this aspect, ordered nanocolumns are more robust and homogeneous, keeping the large surface/volume ratio. As first experimental evidence of their sensor capabilities, ordered nanocolumns have been studied regarding their photoluminiscence on air and vacuum ambient. A big drop in the intensity is observed when the nanocolumns are exposed to air (probably because of the oxygen photo-adsortion), as was already reported in the case of self-assembled nanocolumns. This opens the way to future sensors based on ordered III nitrides nanocolumns.
Resumo:
Separated transitional boundary layers appear on key aeronautical processes such as the flow around wings or turbomachinery blades. The aim of this thesis is the study of these flows in representative scenarios of technological applications, gaining knowledge about phenomenology and physical processes that occur there and, developing a simple model for scaling them. To achieve this goal, experimental measurements have been carried out in a low speed facility, ensuring the flow homogeneity and a low disturbances level such that unwanted transitional mechanisms are avoided. The studied boundary layers have been developed on a flat plate, by imposing a pressure gradient by means of contoured walls. They generate an initial acceleration region followed by a deceleration zone. The initial region is designed to obtain at the beginning of the deceleration the Blasius profile, characterized by its momentum thickness, and an edge boundary layer velocity, defining the problem characteristic velocity. The deceleration region is designed to obtain a linear evolution of the edge velocity, thereby defining the characteristic length of the problem. Several experimental techniques, both intrusive (hot wire anemometry, total pressure probes) as nonintrusive (PIV and LDV anemometry, high-speed filming), have been used in order to take advantage of each of them and allow cross-validation of the results. Once the boundary layer at the deceleration beginning has been characterized, ensuring the desired integral parameters and level of disturbance, the evolution of the laminar boundary layer up to the point of separation is studied. It has been compared with integral methods, and numerical simulations. In view of the results a new model for this evolution is proposed. Downstream from the separation, the flow near to the wall is configured as a shear layer that encloses low momentum recirculating fluid. The region where the shear layer remains laminar tends to be positioned to compensate the adverse pressure gradient associated with the imposed deceleration. Under these conditions, the momentum thickness remains almost constant. This laminar shear layer region extends up to where transitional phenomena appear, extension that scales with the momentum thickness at separation. These transitional phenomena are of inviscid type, similar to those found in free shear layers. The transitional region analysis begins with a study of the disturbances evolution in the linear growth region and the comparison of experimental results with a numerical model based on Linear Stability Theory for parallel flows and with data from other authors. The results’ coalescence for both the disturbances growth and the excited frequencies is stated. For the transition final stages the vorticity concentration into vortex blobs is found, analogously to what happens in free shear layers. Unlike these, the presence of the wall and the pressure gradient make the large scale structures to move towards the wall and quickly disappear under certain circumstances. In these cases, the recirculating flow is confined into a closed region saying the bubble is closed or the boundary layer reattaches. From the reattachment point, the fluid shows a configuration in the vicinity of the wall traditionally considered as turbulent. It has been observed that existing integral methods for turbulent boundary layers do not fit well to the experimental results, due to these methods being valid only for fully developed turbulent flow. Nevertheless, it has been found that downstream from the reattachment point the velocity profiles are self-similar, and a model has been proposed for the evolution of the integral parameters of the boundary layer in this region. Finally, the phenomenon known as bubble burst is analyzed. It has been checked the validity of existing models in literature and a new one is proposed. This phenomenon is blamed to the inability of the large scale structures formed after the transition to overcome with the adverse pressure gradient, move towards the wall and close the bubble. El estudio de capas límites transicionales con separación es de gran relevancia en distintas aplicaciones tecnológicas. Particularmente, en tecnología aeronáutica, aparecen en procesos claves, tales como el flujo alrededor de alas o álabes de turbomaquinaria. El objetivo de esta tesis es el estudio de estos flujos en situaciones representativas de las aplicaciones tecnológicas, ganando por un lado conocimiento sobre la fenomenología y los procesos físicos que aparecen y, por otra parte, desarrollando un modelo sencillo para el escalado de los mismos. Para conseguir este objetivo se han realizado ensayos en una instalación experimental de baja velocidad específicamente diseñada para asegurar un flujo homogéneo y con bajo nivel de perturbaciones, de modo que se evita el disparo de mecanismos transicionales no deseados. La capa límite bajo estudio se ha desarrollado sobre una placa plana, imponiendo un gradiente de presión a la misma por medio de paredes de geometría especificada. éstas generan una región inicial de aceleración seguida de una zona de deceleración. La región inicial se diseña para tener en al inicio de la deceleración un perfil de capa límite de Blasius, caracterizado por su espesor de cantidad de movimiento, y una cierta velocidad externa a la capa límite que se considera la velocidad característica del problema. La región de deceleración está concebida para que la variación de la velocidad externa a la capa límite sea lineal, definiendo de esta forma una longitud característica del problema. Los ensayos se han realizado explotando varias técnicas experimentales, tanto intrusivas (anemometría de hilo caliente, sondas de presión total) como no intrusivas (anemometrías láser y PIV, filmación de alta velocidad), de cara a aprovechar las ventajas de cada una de ellas y permitir validación cruzada de resultados entre las mismas. Caracterizada la capa límite al comienzo de la deceleración, y garantizados los parámetros integrales y niveles de perturbación deseados se procede al estudio de la zona de deceleración. Se presenta en la tesis un análisis de la evolución de la capa límite laminar desde el inicio de la misma hasta el punto de separación, comparando con métodos integrales, simulaciones numéricas, y proponiendo un nuevo modelo para esta evolución. Aguas abajo de la separación, el flujo en las proximidades de la pared se configura como una capa de cortadura que encierra una región de fluido recirculatorio de baja cantidad de movimiento. Se ha caracterizado la región en que dicha capa de cortadura permanece laminar, encontrando que se posiciona de modo que compensa el gradiente adverso de presión asociado a la deceleración de la corriente. En estas condiciones, el espesor de cantidad de movimiento permanece prácticamente constante y esta capa de cortadura laminar se extiende hasta que los fenómenos transicionales aparecen. Estos fenómenos son de tipo no viscoso, similares a los que aparecen en una capa de cortadura libre. El análisis de la región transicional comienza con un estudio de la evolución de las vii viii RESUMEN perturbaciones en la zona de crecimiento lineal de las mismas y la comparación de los resultados experimentales con un modelo numérico y con datos de otros autores. La coalescencia de los resultados tanto para el crecimiento de las perturbaciones como para las frecuencias excitadas queda demostrada. Para los estadios finales de la transición se observa la concentración de la vorticidad en torbellinos, de modo análogo a lo que ocurre en capas de cortadura libres. A diferencia de estas, la presencia de la pared y del gradiente de presión hace que, bajo ciertas condiciones, la gran escala se desplace hacia la pared y desaparezca rápidamente. En este caso el flujo recirculatorio queda confinado en una región cerrada y se habla de cierre de la burbuja o readherencia de la capa límite. A partir del punto de readherencia se tiene una configuración fluida en las proximidades de la pared que tradicionalmente se ha considerado turbulenta. Se ha observado que los métodos integrales existentes para capas límites turbulentas no ajustan bien a las medidas experimentales realizadas, hecho imputable a que no se obtiene en dicha región un flujo turbulento plenamente desarrollado. Se ha encontrado, sin embargo, que pasado el punto de readherencia los perfiles de velocidad próximos a la pared son autosemejantes entre sí y se ha propuesto un modelo para la evolución de los parámetros integrales de la capa límite en esta región. Finalmente, el fenómeno conocido como “estallido” de la burbuja se ha analizado. Se ha comprobado la validez de los modelos existentes en la literatura y se propone uno nuevo. Este fenómeno se achaca a la incapacidad de la gran estructura formada tras la transición para vencer el gradiente adverso de presión, desplazarse hacia la pared y cerrar la burbuja.
Resumo:
Problem-based learning has been applied over the last three decades to a diverse range of learning environments. In this educational approach, different problems are posed to the learners so that they can develop different solutions while learning about the problem domain. When applied to conceptual modelling, and particularly to Qualitative Reasoning, the solutions to problems are models that represent the behaviour of a dynamic system. The learner?s task then is to bridge the gap between their initial model, as their first attempt to represent the system, and the target models that provide solutions to that problem. We propose the use of semantic technologies and resources to help in bridging that gap by providing links to terminology and formal definitions, and matching techniques to allow learners to benefit from existing models.
Resumo:
It is well established that aesthetic appreciation is related with activity in several different brain regions. The identification of the neural correlates of beauty or liking ratings has been the focus of most prior studies. Not much attention has been directed towards the fact that humans are surrounded by objects that lead them to experience aesthetic indifference or leave them with a negative aesthetic impression. Here we explore the neural substrate of such experiences. Given the neuroimaging techniques that have been used, little is known about the temporal features of such brain activity. By means of magnetoencephalography we registered the moment at which brain activity differed while participants viewed images they considered to be beautiful or not. Results show that the first differential activity appears between 300 and 400 ms after stimulus onset. During this period activity in right lateral orbitofrontal cortex (lOFC) was greater while participants rated visual stimuli as not beautiful than when they rated them as beautiful. We argue that this activity is associated with an initial negative aesthetic impression formation, driven by the relative hedonic value of stimuli regarded as not beautiful. Additionally, our results contribute to the understanding of the nature of the functional roles of the lOFC.
Resumo:
We present a combinatorial decision problem, inspired by the celebrated quiz show called Countdown, that involves the computation of a given target number T from a set of k randomly chosen integers along with a set of arithmetic operations. We find that the probability of winning the game evidences a threshold phenomenon that can be understood in the terms of an algorithmic phase transition as a function of the set size k. Numerical simulations show that such probability sharply transitions from zero to one at some critical value of the control parameter, hence separating the algorithm's parameter space in different phases. We also find that the system is maximally efficient close to the critical point. We derive analytical expressions that match the numerical results for finite size and permit us to extrapolate the behavior in the thermodynamic limit.
Resumo:
Modern object oriented languages like C# and JAVA enable developers to build complex application in less time. These languages are based on selecting heap allocated pass-by-reference objects for user defined data structures. This simplifies programming by automatically managing memory allocation and deallocation in conjunction with automated garbage collection. This simplification of programming comes at the cost of performance. Using pass-by-reference objects instead of lighter weight pass-by value structs can have memory impact in some cases. These costs can be critical when these application runs on limited resource environments such as mobile devices and cloud computing systems. We explore the problem by using the simple and uniform memory model to improve the performance. In this work we address this problem by providing an automated and sounds static conversion analysis which identifies if a by reference type can be safely converted to a by value type where the conversion may result in performance improvements. This works focus on C# programs. Our approach is based on a combination of syntactic and semantic checks to identify classes that are safe to convert. We evaluate the effectiveness of our work in identifying convertible types and impact of this transformation. The result shows that the transformation of reference type to value type can have substantial performance impact in practice. In our case studies we optimize the performance in Barnes-Hut program which shows total memory allocation decreased by 93% and execution time also reduced by 15%.