963 resultados para CO2-gas


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents the results on the diagnostics and numerical modeling of low-frequency (∼460 KHz) inductively coupled plasmas generated in a cylindrical metal chamber by an external flat spiral coil. Experimental data on the electron number densities and temperatures, electron energy distribution functions, and optical emission intensities of the abundant plasma species in low/intermediate pressure argon discharges are included. The spatial profiles of the plasma density, electron temperature, and excited argon species are computed, for different rf powers and working gas pressures, using the two-dimensional fluid approach. The model allows one to achieve a reasonable agreement between the computed and experimental data. The effect of the neutral gas temperature on the plasma parameters is also investigated. It is shown that neutral gas heating (at rf powers≥0.55kW) is one of the key factors that control the electron number density and temperature. The dependence of the average rf power loss, per electron-ion pair created, on the working gas pressure shows that the electron heat flux to the walls appears to be a critical factor in the total power loss in the discharge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalytic probes are used for plasma diagnostics in order to quantify the density of neutral atoms. The probe response primarily depends on the probe material and its surface morphology. Here we report on the design, operation and modelling of the response of niobium pentoxide sensors with a flat and nanowire (NW) surfaces. These sensors were used to detect neutral oxygen atoms in the afterglow region of an inductively coupled rf discharge in oxygen. A very different response of the flat-surface and NW probes to the varying densities of oxygen atoms was explained by modelling heat conduction and taking into account the associated temperature gradients. It was found that the nanostructure probe can measure in a broader range than the flat oxide probe due to an increase in the surface to volume ratio, and the presence of nanostructures which act as a thermal barrier against sensor overheating. These results can be used for the development of the new generation of catalytic probes for gas/discharge diagnostics in a range of industrial and environmental applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of near-sheath dusts on the rf power loss in a surface-wave-sustained gas discharge is studied. The planar plasma is bounded by a dielectric and consists of an inhomogeneous near-wall transition layer (sheath), a dusty plasma layer and an outer dust-free plasma. The discharge is maintained by high-frequency axially symmetrical surface waves. The surface-wave power loss from the most relevant dissipative mechanisms in typical discharge plasmas is analysed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comprehensive study was undertaken involving chemical (inorganic and organic) and bioanalytical (a suite of 14 in vitro bioassays) assessments of coal seam gas (coal bed methane) associated water (CSGW) in Queensland, Australia. CSGW is a by-product of the gas extraction process and is generally considered as water of poor quality. This was done to better understand what is known about the potential biological and environmental effects associated with the organic constituents of CSGW in Australia. In Queensland, large amounts of associated water must be withdrawn from coal seams to allow extraction of the gas. CSGW is disposed of via release to surface water, reinjected to groundwater or reused for irrigation of crops or pasture, supplied for power station cooling and or reinjected specifically to augment drinking water aquifers. Groundwater samples were collected from private wells tapping into the Walloon Coal Measures, the same coal aquifer exploited for coal seam gas production in the Surat Basin, Australia. The inorganic characteristics of these water samples were almost identical to the CSGW entering the nearby gas company operated Talinga-Condabri Water Treatment Facility. The water is brackish with a pH of 8 to 9, high sodium, bicarbonate and chloride concentrations but low calcium, magnesium and negligible sulphate concentrations. Only low levels of polyaromatic hydrocarbons (PAHs) were detected in the water samples, and neither phenols nor volatile organic compounds were found. Results from the bioassays showed no genotoxicity, protein damage, or activation of hormone receptors (with the exception of the estrogen receptor). However, five of the 14 bioassays gave positive responses: an arylhydrocarbon-receptor gene activation assay (AhR-CAFLUX), estrogenic endocrine activity (ERα-CALUX), oxidative stress response (AREc32), interference with cytokine production (THP1-CPA) and non-specific toxicity (Microtox). The observed effects were benchmarked against known water sources and were similar to secondary treated wastewater effluent, stormwater and surface water. As mixture toxicity modelling demonstrated, the detected PAHs explained less than 5% of the observed biological effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of 1D simulation of nanoparticle dynamics in the areas adjacent to nanostructured carbon-based films exposed to chemically active complex plasma of CH4 + H2 + Ar gas mixtures are presented. The nanoparticle-loaded near-substrate (including sheath and presheath) areas of a low-frequency (0.5 MHz) inductively coupled plasma facility for the PECVD growth of the ordered carbon-based nanotip structures are considered. The conditions allowing one to predict the size of particles that can pass through the plasma sheath and softly land onto the surface are formulated. The possibility of soft nano-cluster deposition without any additional acceleration common for some existing nano-cluster deposition schemes is demonstrated. The effect of the substrate heating power and the average atomic mass of neutral species is studied numerically and verified experimentally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An overview of dynamic self-organization phenomena in complex ionized gas systems, associated physical phenomena, and industrial applications is presented. The most recent experimental, theoretical, and modeling efforts to understand the growth mechanisms and dynamics of nano- and micron-sized particles, as well as the unique properties of the plasma-particle systems (colloidal, or complex plasmas) and the associated physical phenomena are reviewed and the major technological applications of micro- and nanoparticles are discussed. Until recently, such particles were considered mostly as a potential hazard for the microelectronic manufacturing and significant efforts were applied to remove them from the processing volume or suppress the gas-phase coagulation. Nowadays, fine clusters and particulates find numerous challenging applications in fundamental science as well as in nanotechnology and other leading high-tech industries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure of a microwave gas discharge produced and sustained by a surface wave (SW) propagating along a cylindrical metal antenna with a dielectric coating is studied. The SW that produces and sustains the microwave gas discharge propagates along an external magnetic field and has an eigenfrequency in the range between the electron cyclotron and electron plasma frequencies. The presence of a dielectric (vacuum) sheath region separating the antenna from the plasma is assumed. The spatial distributions of the produced plasma density, electromagnetic fields, energy flow density, phase velocity and reverse skin depth of the SW are obtained analytically and numerically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exhaust emissions were monitored in real-time at the kerb of a busy busway used by a mix of diesel and CNG-powered transport buses. Particle number concentration in the size range 3 nm to 3 µm was measured with a TSI condensation particle counter (CPC 3025). Particle mass (PM2.5) was measured with a TSI Dustrak 8520. The CO2 emissions were measured with a fast response CO2 analyser (Sable CA-10A). All emission concentrations were recorded in real time at 1 sec resolution, together with the precise passage times of buses. The instantaneous ratio of particle number (or mass) to CO2 concentration, denoted Z, was used as a measure of the particle number (or mass) emission factor of each passing bus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold atmospheric-pressure plasma jets have recently attracted enormous interest owing to numerous applications in plasma biology, health care, medicine, and nanotechnology. A dedicated study of the interaction between the upstream and downstream plasma plumes revealed that the active species (electrons, ions, excited OH, metastable Ar, and nitrogen-related species) generated by the upstream plasma plume enhance the propagation of the downstream plasma plume. At gas flows exceeding 2 l/min, the downstream plasma plume is longer than the upstream plasma plume. Detailed plasma diagnostics and discharge species analysis suggest that this effect is due to the electrons and ions that are generated by the upstream plasma and flow into the downstream plume. This in turn leads to the relatively higher electron density in the downstream plasma. Moreover, high-speed photography reveals a highly unusual behavior of the plasma bullets, which propagate in snake-like motions, very differently from the previous reports. This behavior is related to the hydrodynamic instability of the gas flow, which results in non-uniform distributions of long-lifetime active species in the discharge tube and of surface charges on the inner surface of the tube.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical simulation of a geothermal reservoir, modelled as a bottom-heated square box, filled with water-CO2 mixture is presented in this work. Furthermore, results for two limiting cases of a reservoir filled with either pure water or CO2 are presented. Effects of different parameters including CO2 concentration as well as reservoir pressure and temperature on the overall performance of the system are investigated. It has been noted that, with a fixed reservoir pressure and temperature, any increase in CO2concentration leads to better performance, i.e. stronger convection and higher heat transfer rates. With a fixed CO2 concentration, however, the reservoir pressure and temperature can significantly affect the overall heat transfer and flow rate from the reservoir. Details of such variations are documented and discussed in the present paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effective control of morphology and electrical connectivity of networks of single-walled carbon nanotubes (SWCNTs) by using rough, nanoporous silica supports of Fe catalyst nanoparticles in catalytic chemical vapor deposition is demonstrated experimentally. The very high quality of the nanotubes is evidenced by the G-to-D Raman peak ratios (>50) within the range of the highest known ratios. Transitions from separated nanotubes on smooth SiO2 surface to densely interconnected networks on the nanoporous SiO2 are accompanied by an almost two-order of magnitude increase of the nanotube density. These transitions herald the hardly detectable onset of the nanoscale connectivity and are confirmed by the microanalysis and electrical measurements. The achieved effective nanotube interconnection leads to the dramatic, almost three-orders of magnitude decrease of the SWCNT network resistivity compared to networks of similar density produced by wet chemistry-based assembly of preformed nanotubes. The growth model, supported by multiscale, multiphase modeling of SWCNT nucleation reveals multiple constructive roles of the porous catalyst support in facilitating the catalyst saturation and SWCNT nucleation, consistent with the observed higher density of longer nanotubes. The associated mechanisms are related to the unique surface conditions (roughness, wettability, and reduced catalyst coalescence) on the porous SiO2 and the increased carbon supply through the supporting porous structure. This approach is promising for the direct integration of SWCNT networks into Si-based nanodevice platforms and multiple applications ranging from nanoelectronics and energy conversion to bio- and environmental sensing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A laboratory experiment was set up in small chambers for monitoring greenhouse gas emissions and determining the most suitable time for sampling. A six-treatment experiment was conducted, including a one week pre-incubation and a week for incubation. Timelines for sampling were 1, 2, 3, 6 and 24 hours after closing the lid of the incubation chambers. Variation in greenhouse gas fluxes was high due to the time of sampling. The rates of gas emissions increased in first three hours and decreased afterward. The rates of greenhouse gas emissions at 3 hours after closing lids was close to the mean for the 24-h period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent growth of the coal seam gas industry has increased pressure on regional communities. Debate surrounding the industry is intense and a social licence to operate has yet to be granted to the industry in its entirety. This article presents an analysis of social issues surrounding the coal seam gas industry, making comparisons between two case studies: the Ranger and Jabiluka mines and the Yandicoogina mine. It presents the results of a desktop study, focussed on three topics: community identity; procedural justice and distributive justice, which provides a means for comparison and draws attention to central concerns. It is found that: power imbalances; changing community identities; potentially inequitable distributions of long term benefits and the process to distribute those benefits and negative perceptions of the industry as a whole serve to undermine the provision of a social licence to operate by communities and has the potential to impose significant negative impacts on companies within the industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land use and agricultural practices can result in important contributions to the global source strength of atmospheric nitrous oxide (N2O) and methane (CH4). However, knowledge of gas flux from irrigated agriculture is very limited. From April 2005 to October 2006, a study was conducted in the Aral Sea Basin, Uzbekistan, to quantify and compare emissions of N2O and CH4 in various annual and perennial land-use systems: irrigated cotton, winter wheat and rice crops, a poplar plantation and a natural Tugai (floodplain) forest. In the annual systems, average N2O emissions ranged from 10 to 150 μg N2O-N m−2 h−1 with highest N2O emissions in the cotton fields, covering a similar range of previous studies from irrigated cropping systems. Emission factors (uncorrected for background emission), used to determine the fertilizer-induced N2O emission as a percentage of N fertilizer applied, ranged from 0.2% to 2.6%. Seasonal variations in N2O emissions were principally controlled by fertilization and irrigation management. Pulses of N2O emissions occurred after concomitant N-fertilizer application and irrigation. The unfertilized poplar plantation showed high N2O emissions over the entire study period (30 μg N2O-N m−2 h−1), whereas only negligible fluxes of N2O (<2 μg N2O-N m−2 h−1) occurred in the Tugai. Significant CH4 fluxes only were determined from the flooded rice field: Fluxes were low with mean flux rates of 32 mg CH4 m−2 day−1 and a low seasonal total of 35.2 kg CH4 ha−1. The global warming potential (GWP) of the N2O and CH4 fluxes was highest under rice and cotton, with seasonal changes between 500 and 3000 kg CO2 eq. ha−1. The biennial cotton–wheat–rice crop rotation commonly practiced in the region would average a GWP of 2500 kg CO2 eq. ha−1 yr−1. The analyses point out opportunities for reducing the GWP of these irrigated agricultural systems by (i) optimization of fertilization and irrigation practices and (ii) conversion of annual cropping systems into perennial forest plantations, especially on less profitable, marginal lands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agriculture is responsible for a significant proportion of total anthropogenic greenhouse gas emissions (perhaps 18% globally), and therefore has the potential to contribute to efforts to reduce emissions as a means of minimising the risk of dangerous climate change. The largest contributions to emissions are attributed to ruminant methane production and nitrous oxide from animal waste and fertilised soils. Further, livestock, including ruminants, are an important component of global and Australian food production and there is a growing demand for animal protein sources. At the same time as governments and the community strengthen objectives to reduce greenhouse gas emissions, there are growing concerns about global food security. This paper provides an overview of a number of options for reducing methane and nitrous oxide emissions from ruminant production systems in Australia, while maintaining productivity to contribute to both objectives. Options include strategies for feed modification, animal breeding and herd management, rumen manipulation and animal waste and fertiliser management. Using currently available strategies, some reductions in emissions can be achieved, but practical commercially available techniques for significant reductions in methane emissions, particularly from extensive livestock production systems, will require greater time and resource investment. Decreases in the levels of emissions from these ruminant systems (i.e., the amount of emissions per unit of product such as meat) have already been achieved. However, the technology has not yet been developed for eliminating production of methane from the rumen of cattle and sheep digesting the cellulose and lignin-rich grasses that make up a large part of the diet of animals grazing natural pastures, particularly in arid and semi-arid grazing lands. Nevertheless, the abatement that can be achieved will contribute significantly towards reaching greenhouse gas emissions reduction targets and research will achieve further advances.