951 resultados para Bombing, Aerial
Resumo:
The mapping and geospatial analysis of benthic environments are multidisciplinary tasks that have become more accessible in recent years because of advances in technology and cost reductions in survey systems. The complex relationships that exist among physical, biological, and chemical seafloor components require advanced, integrated analysis techniques to enable scientists and others to visualize patterns and, in so doing, allow inferences to be made about benthic processes. Effective mapping, analysis, and visualization of marine habitats are particularly important because the subtidal seafloor environment is not readily viewed directly by eye. Research in benthic environments relies heavily, therefore, on remote sensing techniques to collect effective data. Because many benthic scientists are not mapping professionals, they may not adequately consider the links between data collection, data analysis, and data visualization. Projects often start with clear goals, but may be hampered by the technical details and skills required for maintaining data quality through the entire process from collection through analysis and presentation. The lack of technical understanding of the entire data handling process can represent a significant impediment to success. While many benthic mapping efforts have detailed their methodology as it relates to the overall scientific goals of a project, only a few published papers and reports focus on the analysis and visualization components (Paton et al. 1997, Weihe et al. 1999, Basu and Saxena 1999, Bruce et al. 1997). In particular, the benthic mapping literature often briefly describes data collection and analysis methods, but fails to provide sufficiently detailed explanation of particular analysis techniques or display methodologies so that others can employ them. In general, such techniques are in large part guided by the data acquisition methods, which can include both aerial and water-based remote sensing methods to map the seafloor without physical disturbance, as well as physical sampling methodologies (e.g., grab or core sampling). The terms benthic mapping and benthic habitat mapping are often used synonymously to describe seafloor mapping conducted for the purpose of benthic habitat identification. There is a subtle yet important difference, however, between general benthic mapping and benthic habitat mapping. The distinction is important because it dictates the sequential analysis and visualization techniques that are employed following data collection. In this paper general seafloor mapping for identification of regional geologic features and morphology is defined as benthic mapping. Benthic habitat mapping incorporates the regional scale geologic information but also includes higher resolution surveys and analysis of biological communities to identify the biological habitats. In addition, this paper adopts the definition of habitats established by Kostylev et al. (2001) as a “spatially defined area where the physical, chemical, and biological environment is distinctly different from the surrounding environment.” (PDF contains 31 pages)
Resumo:
Coral reefs exist in warm, clear, and relatively shallow marine waters worldwide. These complex assemblages of marine organisms are unique, in that they support highly diverse, luxuriant, and essentially self-sustaining ecosystems in otherwise nutrient-poor and unproductive waters. Coral reefs are highly valued for their great beauty and for their contribution to marine productivity. Coral reefs are favorite destinations for recreational diving and snorkeling, as well as commercial and recreational fishing activities. The Florida Keys reef tract draws an estimated 2 million tourists each year, contributing nearly $800 million to the economy. However, these reef systems represent a very delicate ecological balance, and can be easily damaged and degraded by direct or indirect human contact. Indirect impacts from human activity occurs in a number of different forms, including runoff of sediments, nutrients, and other pollutants associated with forest harvesting, agricultural practices, urbanization, coastal construction, and industrial activities. Direct impacts occur through overfishing and other destructive fishing practices, mining of corals, and overuse of many reef areas, including damage from souvenir collection, boat anchoring, and diver contact. In order to protect and manage coral reefs within U.S. territorial waters, the National Oceanic and Atmospheric Administration (NOAA) of the U.S. Department of Commerce has been directed to establish and maintain a system of national marine sanctuaries and reserves, and to monitor the condition of corals and other marine organisms within these areas. To help carry out this mandate the NOAA Coastal Services Center convened a workshop in September, 1996, to identify current and emerging sensor technologies, including satellite, airborne, and underwater systems with potential application for detecting and monitoring corals. For reef systems occurring within depths of 10 meters or less (Figure 1), mapping location and monitoring the condition of corals can be accomplished through use of aerial photography combined with diver surveys. However, corals can exist in depths greater than 90 meters (Figure 2), well below the limits of traditional optical imaging systems such as aerial or surface photography or videography. Although specialized scuba systems can allow diving to these depths, the thousands of square kilometers included within these management areas make diver surveys for deeper coral monitoring impractical. For these reasons, NOAA is investigating satellite and airborne sensor systems, as well as technologies which can facilitate the location, mapping, and monitoring of corals in deeper waters. The following systems were discussed as having potential application for detecting, mapping, and assessing the condition of corals. However, no single system is capable of accomplishing all three of these objectives under all depths and conditions within which corals exist. Systems were evaluated for their capabilities, including advantages and disadvantages, relative to their ability to detect and discriminate corals under a variety of conditions. (PDF contains 55 pages)
Resumo:
South Carolina’s oyster reefs are a major component of the coastal landscape. Eastern oysters Crassostrea virginica are an important economic resource to the state and serve many essential functions in the environment, including water filtration, creek bank stabilization and habitat for other plants and animals. Effective conservation and management of oyster reefs is dependent on an understanding of their abundance, distribution, condition, and change over time. In South Carolina, over 95% of the state’s oyster habitat is intertidal. The current intertidal oyster reef database for South Carolina was developed by field assessment over several years. This database was completed in the early 1980s and is in need of an update to assess resource/habitat status and trends across the state. Anthropogenic factors such as coastal development and associated waterway usage (e.g., boat wakes) are suspected of significantly altering the extent and health of the state’s oyster resources. In 2002 the NOAA Coastal Services Center’s (Center) Coastal Remote Sensing Program (CRS) worked with the Marine Resources Division of the South Carolina Department of Natural Resources (SCDNR) to develop methods for mapping intertidal oyster reefs along the South Carolina coast using remote sensing technology. The objective of this project was to provide SCDNR with potential methodologies and approaches for assessing oyster resources in a more efficiently than could be accomplished through field digitizing. The project focused on the utility of high-resolution aerial imagery and on documenting the effectiveness of various analysis techniques for accomplishing the update. (PDF contains 32 pages)
Resumo:
This report covers the 37th annual inventory of chinook salman, Oncorhynchus tshawytscha, spawner populations in the Sacramento-San Joaquin River system.-It is a compilation of reports estimating the fall-, winter-, late-fall-, and spring-run salmon spawner populations for streams which were surveyed. Estimates were made from counts of fish entering hatcheries and migrating past dams, froro surveys of dead and live fish and redds on spawning areas, and from aerial counts. The estimated 1989 total escapement of chinook salmon in the Central Valley was 205,990 fish. This total consisted of 181,864 fall-, 12,171 spring-, 539 winter-, and 11,416 late-fall-run spawners. All of the spring-, late-fall-, and winter-run salmon were estimated to be in the Sacramento River system, while 3,493 fish of the fall run were in the San Joaquin River system. Due to decreases of spawner populations in most Central Valley tributaries, the total 1989 salmon stock was 32% lower than in 1988; however, late-fall salmon in the upper Sacramento River had a run size similar to that of 1988. The winter run in the mainstem Sacramento River was at a record low level. (PDF contains 44 pages.)
Resumo:
This dissertation is an assessment of the status of odontocetes in Hawaiian waters focussing on O´ahu. The work builds on available literature, and on data collected by the author and by others in Hawaiian waters. Abundance and distribution patterns of odontocetes were derived from stranding and aerial survey data. A stranding network operated by the National Marine Fisheries Service, Pacific Area Office collected 187 stranding reports throughout the main Hawaiian Islands between 1937 and 2002. These reports included 16 odontocete species. Number of stranding reports increased over time and was highest on O´ahu. Strandings occurred throughout the year. The difference in number of strandings per month was not significant. Fifteen of the 16 species reported in the stranding record for the main Hawaiian Islands were also reported by aerial survey studies of the area between 1993 and 1998. Only 7 of the species reported were detected during aerial transects around O′ahu between 1998 and 2000. Based on the stranding record, Kogia sp., melon-headed whales, striped dolphins and dwarf killer whale appear to be more common than suggested by aerial surveys. Conversely, pilot whales and bottlenose dolphins were more common, according to aerial surveys, than predicted by the stranding data. Aerial surveys of waters between 0 and 500m around the Island of O′ahu showed that the most abundant species by frequency of occurrence was the pilot whale (30% of sightings), followed by the spinner (16%) and bottlenose dolphin (14%). Because of small sample size, abundance estimates for odontocetes have a high level of uncertainty. The unavailability of a correction factor for g(0)<1, and the reduced visibility below the aircraft further reduced accuracy and increased the inherent underestimation in the data. The most abundant species according to distance sampling estimates were spotted dolphins, pilot whales, false killer whales and spinner dolphins. A natural factor shaping the ecology of odontocete populations is predation pressure both by other odontocetes and, more frequently, by sharks. An account of predation by a tiger shark on a spotted dolphin near Penguin Banks is used as an example of the potential mechanisms of predation by sharks on odontocetes.
Resumo:
EXECUTIVE SUMMARY: The Coastal Change Analysis Programl (C-CAP) is developing a nationally standardized database on landcover and habitat change in the coastal regions of the United States. C-CAP is part of the Estuarine Habitat Program (EHP) of NOAA's Coastal Ocean Program (COP). C-CAP inventories coastal submersed habitats, wetland habitats, and adjacent uplands and monitors changes in these habitats on a one- to five-year cycle. This type of information and frequency of detection are required to improve scientific understanding of the linkages of coastal and submersed wetland habitats with adjacent uplands and with the distribution, abundance, and health of living marine resources. The monitoring cycle will vary according to the rate and magnitude of change in each geographic region. Satellite imagery (primarily Landsat Thematic Mapper), aerial photography, and field data are interpreted, classified, analyzed, and integrated with other digital data in a geographic information system (GIS). The resulting landcover change databases are disseminated in digital form for use by anyone wishing to conduct geographic analysis in the completed regions. C-CAP spatial information on coastal change will be input to EHP conceptual and predictive models to support coastal resource policy planning and analysis. CCAP products will include 1) spatially registered digital databases and images, 2) tabular summaries by state, county, and hydrologic unit, and 3) documentation. Aggregations to larger areas (representing habitats, wildlife refuges, or management districts) will be provided on a case-by-case basis. Ongoing C-CAP research will continue to explore techniques for remote determination of biomass, productivity, and functional status of wetlands and will evaluate new technologies (e.g. remote sensor systems, global positioning systems, image processing algorithms) as they become available. Selected hardcopy land-cover change maps will be produced at local (1:24,000) to regional scales (1:500,000) for distribution. Digital land-cover change data will be provided to users for the cost of reproduction. Much of the guidance contained in this document was developed through a series of professional workshops and interagency meetings that focused on a) coastal wetlands and uplands; b) coastal submersed habitat including aquatic beds; c) user needs; d) regional issues; e) classification schemes; f) change detection techniques; and g) data quality. Invited participants included technical and regional experts and representatives of key State and Federal organizations. Coastal habitat managers and researchers were given an opportunity for review and comment. This document summarizes C-CAP protocols and procedures that are to be used by scientists throughout the United States to develop consistent and reliable coastal change information for input to the C-CAP nationwide database. It also provides useful guidelines for contributors working on related projects. It is considered a working document subject to periodic review and revision.(PDF file contains 104 pages.)
Resumo:
Over the last several years, concern has increased about the amount of man-made materials lost or discarded at sea and the potential impacts to the environment. The scope of the problem depends on the amounts and types of debris. One problem in making a regional comparison of debris is the lack of a standard methodology. The objective of this manual is to discuss designs and methodologies for assessment studies of marine debris. This manual has been written for managers, researchers, and others who are just entering this area of study and who seek guidance in designing marine debris surveys. Active researchers will be able to use this manual along with applicable references herein as a source for design improvement. To this end, the authors have synthesized their work and reviewed survey techniques that have been used in the past for assessing marine debris, such as sighting surveys, beach surveys, and trawl surveys, and have considered new methods (e.g., aerial photography). All techniques have been put into a general survey planning framework to assist in developing different marine debris surveys. (PDF file contains 100 pages.)
Resumo:
The ecology and reproductive biology of the leatherback turtle (Dennochelys coriacea) was studied on a high-energy nesting beach near Laguna Jalova, Costa Rica, between 28 March and 8 June 1985. The peak of nesting was between 15 April and 21 May. Leatherbacks here measured an average 146.6 cm straightline standard carapace length and laid an average 81.57 eggs. The eggs measured a mean 52.12 mm diameter and weighed an average of 85.01 g. Significant positive relationships were found between the carapace lengths of nesters and their clutch sizes and average diameter and weight of eggs. The total clutch weighed between 4.02 and 13.39 kg, and yolkless eggs accounted for an average 12.4% of this weight. The majority of nesters dug shallow (<24 cm) body pits and spent an average 81 minutes at the nest site. A significant number of c1utcbes were laid below the berm crest. In a hatchery 42.2% of the eggs hatched, while in natural nests 70.2% hatched. The average hatchling carapace length was 59.8 mm and weight was 44.6 g. The longevity of leatherback tracks and nests on the beach was affected by weather. One nester was recaptured about one year later off the coast of Mississippi, U.S.A. Egg poaching was intense on some sections of the Costa Rican coast. Four aerial surveys in four different months provided the basis for comparing density of nesting on seven sectors of the Caribbean coast of Costa Rica. The beach at Jalova is heavily used by green turtles (Chelonia mydJJs) after the leatherback nesting season. The role of the Parque Nacional Tortuguero in conserving the leatherback and green turtle is discussed.(PDF file contains 20 pages.)
Resumo:
This report covers the 39th annual inventory of chinook salman, Oncorhynchus tshawytscha, spawner populations in the Sacramento-San Joaquin River system." It is a compilation of reports estimating the fall-, winter-, late-fall-, and spring-run salman spawner populatiens fer streams which were surveyed. Estimates were made from counts of fish entering hatcheries and migrating past dams, from surveys of dead and live fish and redds on spawning areas, and from aerial counts. The estimated 1991 total escapement of chinook salmon in the Central Valley was 147,080 fish. This total consisted of 132,571 fall-, 5,921 spring-, 190 winter-, and 8,398 late-fall-run spawners. All of the spring-, late-fall-, and winter-run salmon were estimated to be in the Sacramento River system, while 1,176 fish of the fall run were in the San Joaquin River system. Spawner populations in all individual tributaries (except the American River) and the Sacramento River mainstem were lower than in 1990; but it should be noted that fall run populations in the Feather and Yuba rivers, two of the larger tributaries, were not surveyed that year. The winter run in the mainstem Sacramento River was at a record low level. (PDF contains 42 pages.)
Resumo:
The Alliance for Coastal Technologies (ACT) Workshop on Towed Vehicles: Undulating Platforms As Tools for Mapping Coastal Processes and Water Quality Assessment was convened February 5-7,2007 at The Embassy Suites Hotel, Seaside, California and sponsored by the ACT-Pacific Coast partnership at the Moss Landing Marine Laboratories (MLML). The TUV workshop was co-chaired by Richard Burt (Chelsea Technology Group) and Stewart Lamerdin (MLML Marine Operations). Invited participants were selected to provide a uniform representation of the academic researchers, private sector product developers, and existing and potential data product users from the resource management community to enable development of broad consensus opinions on the application of TUV platforms in coastal resource assessment and management. The workshop was organized to address recognized limitations of point-based monitoring programs, which, while providing valuable data, are incapable of describing the spatial heterogeneity and the extent of features distributed in the bulk solution. This is particularly true as surveys approach the coastal zone where tidal and estuarine influences result in spatially and temporally heterogeneous water masses and entrained biological components. Aerial or satellite based remote sensing can provide an assessment of the aerial extent of plumes and blooms, yet provide no information regarding the third dimension of these features. Towed vehicles offer a cost-effective solution to this problem by providing platforms, which can sample in the horizontal, vertical, and time-based domains. Towed undulating vehicles (henceforth TUVs) represent useful platforms for event-response characterization. This workshop reviewed the current status of towed vehicle technology focusing on limitations of depth, data telemetry, instrument power demands, and ship requirements in an attempt to identify means to incorporate such technology more routinely in monitoring and event-response programs. Specifically, the participants were charged to address the following: (1) Summarize the state of the art in TUV technologies; (2) Identify how TUV platforms are used and how they can assist coastal managers in fulfilling their regulatory and management responsibilities; (3) Identify barriers and challenges to the application of TUV technologies in management and research activities, and (4) Recommend a series of community actions to overcome identified barriers and challenges. A series of plenary presentation were provided to enhance subsequent breakout discussions by the participants. Dave Nelson (University of Rhode Island) provided extensive summaries and real-world assessment of the operational features of a variety of TUV platforms available in the UNOLs scientific fleet. Dr. Burke Hales (Oregon State University) described the modification of TUV to provide a novel sampling platform for high resolution mapping of chemical distributions in near real time. Dr. Sonia Batten (Sir Alister Hardy Foundation for Ocean Sciences) provided an overview on the deployment of specialized towed vehicles equipped with rugged continuous plankton recorders on ships of opportunity to obtain long-term, basin wide surveys of zooplankton community structure, enhancing our understanding of trends in secondary production in the upper ocean. [PDF contains 32 pages]
Resumo:
ENGLISH: Catch and effort data from logbooks of tuna seiners were used to make estimates of catch per hour of searching for 1970-1980. The estimates were standardized using a regression model to make annual estimates of abundance adjusted for fishing mode, speed, capacity, use of aerial assistance, net dimensions, and sea-surface temperature. Inside the CYRA the standardized estimates for tuna schools associated with dolphins and those for schools not associated with dolphins showed a similar overall pattern of decline. The 1980 catch rates were about 300/0 of the 1970 rates, the decline being greater for the schools not associated with dolphins. Dolphin-associated schools outside the CYRA declined to about 60% of the 1970 levels. SPANISH: Se emplearon los datos de la captura y el esfuerzo de los cuadernos de bitácora de las embarcaciones cerqueras para hacer las estimaciones de la captura por hora de búsqueda correspondientes a 1970-1980. Se normalizaron estas estimaciones usando un modelo de regresión con el fin' de hacer las estimaciones anuales de la abundancia, ajustadas según la moda de pesca, velocidad, capacidad, uso de ayuda aérea, dimensiones de la red y temperatura de la superficie del mar. En el ARCAA las estimaciones normalizadas de los cardúmenes de atún asociados con delfines y aquellas de los cardúmenes no asociados con delfines, indicaron una pauta general similar de reducción. Las proporciones de captura de 1980, fueron cerca del 300/0 de las de 1970, encontrándose la mayor reducción en los cardúmenes no asociados con delfines. Los cardúmenes asociados con delfines, fuera del ARCAA, se redujeron en un 60% con respecto a los niveles de 1970. (PDF contains 79 pages.)
Resumo:
HIGHLIGHTS FOR FY 2008 1. Completed the first of a two-year Gulf sturgeon population study on the Choctawhatchee River, Florida. The sub adult and adult Gulf sturgeon population was estimated at 2,800 fish. 2. Gulf sturgeon eggs were collected at three hard bottom sites in the Apalachicola River, Florida; two sites were previously confirmed spawning areas and one was a newly confirmed spawning area. 3. Documented 55 potential environmental threats to Gulf sturgeon spawning habitat in the Pea River, Florida and Alabama. 4. Assigned the Eglin AFB Road-Stream Crossing Working Group to guide the closure, repair and maintenance of roads and road stream crossings that impact threatened and endangered species. 5. Conducted 81 assessments of fish and stream invertebrates on and in watersheds surrounding Eglin AFB. 6. Provided technical support for the 5-year status review and reclassification proposed rule for the Okaloosa darter. 7. Initiated an intensive population genetic analysis of the Okaloosa darter throughout its range. Tissues from over 200 Okaloosa darters were collected and analyzed. 8. Established a GIS database to serve as a host for data from any sites sampled for mussels in Northeast Gulf of Mexico drainages. 9. Conducted habitat surveys at 115 locations in the Apalachicola River to assess the effects of drought-related mussel mortality and strandings, evaluate habitat conditions, and assess population demography. 10. A land use/aerial imagery threats assessment data analysis was completed for the Chipola River. A total of 266 impoundments/borrow pits and 471 unpaved road crossings were identified among the threats. 11. Okaloosa darters marked with elastomeric dyes were monitored in Mill Creek, Eglin AFB, to determine movement and habitat use following completion of a fish passage project. 3 12. Partners for Fish and Wildlife funded a streambank and riparian restoration project on Econfina Creek consisting of 3,900 feet of streambank fencing to exclude cattle access. One acre of riparian floodplain was planted with native trees. 13. We provided design and on-the-ground assistance for restoring surface hydrology at St. Vincent NWR. The project restored approximately 1.5 miles of tidal stream and 100 acres of wetlands. 14. A study was completed on 11 coastal streams to document large wood debris relationships with fluvial geomorphic characteristics. 15. We developed a Population Viability Analysis model for the fat threeridge mussel to determine current and future risk of extinction. 17. A Gulf Sturgeon Friends Group, “Gulf Sturgeon Preservation Society” was organized in FY 08. 18. Multiple outreach projects were completed to detail aquatic resource conservation needs and opportunities, including National Fishing Week, Earth Day, several festivals and school outreach.
Resumo:
HIGHLIGHTS FOR FY 2007 1. Completed a three-year Gulf sturgeon population study on the Escambia River, Florida. The population was estimated at 451 fish. 2. Implemented the Gulf Striped Bass Restoration Plan by coordinating the 24th Annual Morone Workshop, leading the technical committee, transporting broodfish, coordinating stocking on the Apalachicola-Chattahoochee-Flint (ACF) river system, and evaluating post-stocking success. 3. Completed a survey to document the extent of aquatic resources, recreational fishing opportunities, and fishery management needs on Department of Defense (DoD) facilities located in Region 4. 4. Continued a project in the Apalachicola River to describe the effects of exceptional drought conditions on freshwater mussel recovery. 5. Initiated a study to locate extant populations of the federally endangered Ochlockonee moccasinshell in the Ochlockonee River Basin. We documented the first live individuals in 14 years. 6. Completed a five-year status review for seven threatened and endangered freshwater mussels in the NEG drainages. 7. Restored Mill Creek to improve habitat for the endangered Okaloosa darter by removing six fish passage barriers and creating approximately 3,000 linear feet of new and regenerated stream channel with floodplain and native vegetation. 8. Completed a fish passage project that connected about 5 miles of habitat in Little Rocky Creek, Eglin Air Force Base, to benefit the Okaloosa darter. 9. Completed a threats analysis to aquatic species in the Chipola River watershed using GIS stream data, aerial imagery, and land cover data. 10. Multiple outreach projects were completed to detail aquatic resource conservation needs and opportunities, including National Fishing Week, Earth Day, several festivals, and school outreach.
Resumo:
Estimates of dolphin school sizes made by observers and crew members aboard tuna seiners or by observers on ship or aerial surveys are important components of population estimates of dolphins which are involved in the yellowfin tuna fishery in the eastern Pacific. Differences in past estimates made from tuna seiners and research ships and aircraft have been noted by Brazier (1978). To compare various methods of estimating dolphin school sizes a research cruise was undertaken with the following major objectives: 1) compare estimates made by observers aboard a tuna seiner and in the ship's helicopter, from aerial photographs, and from counts made at the backdown channel, 2) compare estimates of observers who are told the count of the school size after making their estimate to the observer who is not aware of the count to determine if observers can learn to estimate more accurately, and 3) obtain movie and still photographs of dolphin schools of known size at various stages of chase, capture and release to be used for observer training. The secondary objectives of the cruise were to: 1) obtain life history specimens and data from any dolphins that were killed incidental to purse seining. These specimens and data were to be analyzed by the U.S. National Marine Fisheries Service ( NMFS ) , 2) record evasion tactics of dolphin schools by observing them from the helicopter while the seiner approached the school, 3) examine alternative methods for estimating the distance and bearing of schools where they were first sighted, 4) collect the Commission's standard cetacean sighting, set log and daily activity data and expendable bathythermograph data. (PDF contains 31 pages.)
Resumo:
设计了一种模块化结构的无人机编队飞行仿真实验平台.根据阵形控制的模拟需求,将仿真平台进行功能化模块构建,并通过内集方式予以集成.仿真平台结合时序驱动机制、虚拟现实技术、记录与回放技术以及数据分析与重栽软件,使得仿真数据具有时序性、可视性、可记录及重绘性,,操作人员具有高度的参与性,各模拟模块可以根据不同的研究成果进行更改、升级和替代.经过多次仿真实验,该仿真平台运行稳定可靠、占用系统资源小,为无人机编队飞行的研究提供了预验证性的工具,为今后的仿真系统设计提供了一个参考.