971 resultados para Biomechanical Phenomena


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Observations of accelerating seismic activity prior to large earthquakes in natural fault systems have raised hopes for intermediate-term eartquake forecasting. If this phenomena does exist, then what causes it to occur? Recent theoretical work suggests that the accelerating seismic release sequence is a symptom of increasing long-wavelength stress correlation in the fault region. A more traditional explanation, based on Reid's elastic rebound theory, argues that an accelerating sequence of seismic energy release could be a consequence of increasing stress in a fault system whose stress moment release is dominated by large events. Both of these theories are examined using two discrete models of seismicity: a Burridge-Knopoff block-slider model and an elastic continuum based model. Both models display an accelerating release of seismic energy prior to large simulated earthquakes. In both models there is a correlation between the rate of seismic energy release with the total root-mean-squared stress and the level of long-wavelength stress correlation. Furthermore, both models exhibit a systematic increase in the number of large events at high stress and high long-wavelength stress correlation levels. These results suggest that either explanation is plausible for the accelerating moment release in the models examined. A statistical model based on the Burridge-Knopoff block-slider is constructed which indicates that stress alone is sufficient to produce accelerating release of seismic energy with time prior to a large earthquake.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Formulations of fuzzy integral equations in terms of the Aumann integral do not reflect the behavior of corresponding crisp models. Consequently, they are ill-adapted to describe physical phenomena, even when vagueness and uncertainty are present. A similar situation for fuzzy ODEs has been obviated by interpretation in terms of families of differential inclusions. The paper extends this formalism to fuzzy integral equations and shows that the resulting solution sets and attainability sets are fuzzy and far better descriptions of uncertain models involving integral equations. The investigation is restricted to Volterra type equations with mildly restrictive conditions, but the methods are capable of extensive generalization to other types and more general assumptions. The results are illustrated by integral equations relating to control models with fuzzy uncertainties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Within the information systems field, the task of conceptual modeling involves building a representation of selected phenomena in some domain. High-quality conceptual-modeling work is important because it facilitates early detection and correction of system development errors. It also plays an increasingly important role in activities like business process reengineering and documentation of best-practice data and process models in enterprise resource planning systems. Yet little research has been undertaken on many aspects of conceptual modeling. In this paper, we propose a framework to motivate research that addresses the following fundamental question: How can we model the world to better facilitate our developing, implementing, using, and maintaining more valuable information systems? The framework comprises four elements: conceptual-modeling grammars, conceptual-modeling methods, conceptual-modeling scripts, and conceptual-modeling contexts. We provide examples of the types of research that have already been undertaken on each element and illustrate research opportunities that exist.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Study Design. Two abdominal muscle patterns were tested in the same group of individuals, and their effects were compared in relation to sacroiliac joint laxity. One pattern was contraction of the transversus abdominis, Independently of the other abdominals; the other was a bracing action that used all the lateral abdominal muscles. Objectives. To demonstrate the biomechanical effect of the exercise for the transversus abdominis known to be effective in low back pain. Summary of Background Data. Drawing in the abdominal wall is a specific exercise for the transversus abdominis muscle (in cocontraction with the multifidus), which is used in the treatment of back pain. Clinical effectiveness has been demonstrated to be a reduction of 3-year recurrence from 75% to 35%. To the authors' best knowledge, there is not yet in vivo proof of the biomechanical effect of this specific exercise. This study of a biomechanical model on the mechanics of the sacroiliac joint, however, predicted a significant effect of transversus abdominis muscle force. Methods. Thirteen healthy individuals who could perform the test patterns were included. Sacroiliac joint laxity values were recorded with study participants in the prone position during the two abdominal muscle patterns. The values were recorded by means of Doppler Imaging of vibrations. Simultaneous electromyographic recordings and ultrasound imaging were used to verify the two muscle patterns. Results. The range of sacroiliac joint laxity values observed in this study was comparable with levels found in earlier studies of healthy individuals. These values decreased significantly in all individuals during both muscle patterns (P < 0.001). The independent transversus abdominis contraction decreased sacroiliac joint laxity (or rather increased sacroiliac joint stiffness) to a significantly greater degree than the general abdominal exercise pat-tern (P < 0.0260). Conclusions. Contraction of the transversus abdominis significantly decreases the laxity of the sacroiliac joint. This decrease in laxity is larger than that caused by a bracing action using all the lateral abdominal muscles. These findings are in line with the authors' biomechanical model predictions and support the use of independent transversus abdominis contractions for the treatment of low back pain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Complex life cycles are a hallmark of parasitic trematodes. In several trematode taxa, however, the life cycle is truncated: fewer hosts are used than in a typical three-host cycle, with fewer transmission events. Eliminating one host from the life cycle can be achieved in at least three different ways. Some trematodes show even more extreme forms of life cycle abbreviations, using only a mollusc to complete their cycle, with or without sexual reproduction. The occurrence of these phenomena among trematode families are reviewed here and show that life cycle truncation has evolved independently many times in the phylogeny of trematodes. The hypotheses proposed to account for life-cycle truncation, in addition to the factors preventing the adoption of shorter cycles by all trematodes are also discussed. The study of shorter life cycles offers an opportunity to understand the forces shaping the evolution of life cycles in general.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Models for the occurrence of the vibrational instability during rolling known as third octave chatter are presented and discussed. An analysis of rolling mill chatter was performed for the purpose of identifying characteristics of the vibrations and to determine any dependency on the rolling schedule. In particular, a stability criterion for the critical rolling speed is used to predict the maximum rolling speed without chatter instability on schedules from a 5 stand tandem mill rolling thin steel product. The results correlate well with measurements of critical speed occurring on the mill using a vibration monitor: This research provides significant insights into the chatter phenomena and has been used to investigate control methods for suppression of the instability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resonance phenomena associated with the unimolecular dissociation of H2S --> SH + H have been investigated quantum mechanically by the Lanczos homogeneous filter diagonalization method using a newly developed potential energy surface (J. Chem. Phys. 2001, 114, 320). Resonance energies, widths (rates), and product state distributions have been obtained. Both dissociation rates and product state distributions of SH show, strong fluctuations, indicating that the dissociation of H2S is essentially irregular. Statistical analysis of neighboring level spacing and width distributions also confirms this behavior. The dissociation rates and product state distributions are compared to the predictions of quantum phase space theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective. A pilot investigation of the influence of different force levels on a treatment technique's hypoalgesic effect. Design. Randomised single blind repeated measures. Background. Optimisation of such biomechanical treatment variables as the point of force application, direction of force application and the level of applied manual force is classically regarded as the basis of best practice manipulative therapy. Manipulative therapy is frequently used to alleviate pain, a treatment effect that is often studied directly in the neurophysiological, paradigm and seldom in biomechanical research. The relationship between the level of force applied by a technique (e.g. biomechanics) and its hypoalgesic effect was the focus of this study. Method. The experiment involved the application of a lateral glide mobilisation with movement treatment technique to the symptomatic elbow of six subjects with lateral epicondylalgia. Four different levels of force, which were measured with a flexible pressure-sensing mat, were randomly applied while the subject performed a pain free grip strength test. Results. Standardised manual force data varied from 0.76 to 4.54 N/cm, lower-upper limits 95 Cl, respectively. Pain free grip strength expressed as a percentage change from pre-treatment values was significantly greater with manual forces beyond 1.9 N/cm (P = 0.014). Conclusions. This study, albeit a pilot, provides preliminary evidence that in terms of the hypoalgesic effect of a mobilisation with movement treatment technique, there may be an optimal level of applied manual force.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: Because it is believed that bone may respond to exercise differently at different ages, we compared bone responses in immature and mature rats after 12 wk of treadmill running. Methods: Twenty-two immature (5-wk-old) and 21 mature (17-wk-old) female Sprague Dawley rats were randomized into a running (trained, N = 10 immature, 9 mature) or a control group (controls, N 12 immature, 12 mature) before sacrifice 12 wk later. Rats ran on a treadmill five times per week for 60-70 min at speeds up to 26 m.min(-1). Both at baseline and after intervention, we measured total body, lumbar spine, and proximal femoral bone mineral, as well as total body soft tissue composition using dual-energy x-ray absorptiometry (DXA) in vivo. After sacrificing the animals, we measured dynamic and static histomorphometry and three-point bending strength of the tibia. Results: Running training was associated with greater differences in tibial subperiosteal area, cortical cross-sectional area, peak load, stiffness, and moment of inertia in immature and mature rats (P < 0.05). The trained rats had greater periosteal bone formation rates (P < 0.01) than controls, but there was no difference in tibial trabecular bone histomorphometry. Similar running-related gains were seen in DXA lumbar spine area (P = 0.04) and bone mineral content (BMC; P = 0.03) at both ages. For total body bone area and BMC, the immature trained group increased significantly compared with controls (P < 0.05), whereas the mature trained group gained less than did controls (P < 0.01). Conclusion: In this in vivo model, where a similar physical training program was performed by immature and mature female rats, we demonstrated that both age groups were sensitive to loading and that bone strength gains appeared to result more from changes in bone geometry than from improved material properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The widespread adoption of soil conservation technologies by farmers (notably contour hedgerows) observed in Guba, Cebu City, Philippines, is not often observed elsewhere In the country. Adoption of these technologies was because of the interaction of such phenomena as site-specific factors, appropriate extension systems, and technologies. However, lack of hedgerow maintenance, decreasing hedgerow quality, and disappearance of hedgerows raised concerns about sustainability. The dynamic nature of upland farming systems suggests the need for a location-specific farming system development framework, which provides farmers with ongoing extension for continual promotion of appropriate conservation practices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The notion of implicature was first introduced by Paul Grice (1967, 1989), who defined it essentially as what is communicated less what is said. This definition contributed in part to the proliferation of a large number of different species of implicature by neo-Griceans. Relevance theorists have responded to this by proposing a shift back to the distinction between "explicit" & "implicit" meaning (corresponding to "explicature" & "implicature," respectively). However, they appear to have pared down the concept of implicature too much, ignoring phenomena that may be better treated as implicatures in their overgeneralization of the concept of explicature. These problems have their roots in the fact that explicit & implicit meaning intuitively overlap & thus do not provide a suitable basis for distinguishing implicature from other types of pragmatic phenomena. An alternative conceptualization of implicature based on the concept of "implying" with which Grice originally associated his notion of implicature is thus proposed. From this definition, it emerges that implicature constitutes something else inferred by the addressee that is not literally said by the speaker. Instead, it is meant in addition to what the speaker literally says & is consequently defeasible like all other types of pragmatic phenomena. 1 Figure, 60 References. Adapted from the source document

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultrasonic speed of propagation and attenuation were investigated as a function of absorbed radiation dose in PAG and MAGIC polymer gel dosimeters. Both PAG and MAGIC gel dosimeters displayed a dependence of ultrasonic parameters on absorbed dose with attenuation displaying significant changes in the dose range investigated. The ultrasonic attenuation dose sensitivity at 4 MHz in MAGIC gels was determined to be 4.7 +/- 0.3 dB m(-1) Gy(-1) and for PAG 3.9 +/- 0.3 dB m(-1) Gy(-1). Ultrasonic speed dose sensitivities were 0.178 +/- 0.006 m s(-1) Gy(-1) for MAGIC gel and -0.44 +/- 0.02 m s(-1) Gy(-1) for PAG. Density and compressional elastic modulus were investigated to explain the different sensitivities of ultrasonic speed to radiation for PAG and MAGIC gels. The different sensitivities were found to be due to differences in the compressional elastic modulus as a function of dose for the two formulations. To understand the physical phenomena underlying the increase in ultrasonic attenuation with dose, the viscoelastic properties of the gels were studied. Results suggest that at ultrasonic frequencies, attenuation in polymer gel dosimeters is primarily due to volume viscosity. It is concluded that ultrasonic attenuation significantly increases with absorbed dose. Also, the ultrasonic speed in polymer gel dosimeters is affected by changes in dosimeter elastic modulus that are likely to be a result of polymerization. It is suggested that ultrasound is a sufficiently sensitive technique for polymer gel dosimetry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calcium-binding proteins (CBPs) such as calbindin, parvalbumin and calretinin are used as immunohistochemical markers for discrete neuronal subpopulations. They are particularly useful in identifying the various subpopulations of GABAergic interneurons that control output from prefrontal and cingulate cortices as well as from the hippocampus. The strategic role these interneurons play in regulating output from these three crucial brain regions has made them a focus for neuropathological investigation in schizophrenia. The number of pathological reports detailing subtle changes in these CBP-containing interneurons in patients with schizophrenia is rapidly growing. These proteins however are more than convenient neuronal markers. They confer survival advantages to neurons and can increase the neuron's ability to sustain firing. These properties may be important in the subtle pathophysiology of nondegenerative phenomena such as schizophrenia. The aim of this review is to introduce the reader to the functional properties of CBPs and to examine the emerging literature reporting alterations in these proteins in schizophrenia as well as draw some conclusions about the significance of these findings. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The particle-based Lattice Solid Model (LSM) was developed to provide a basis to study the physics of rocks and the nonlinear dynamics of earthquakes (MORA and PLACE, 1994; PLACE and MORA, 1999). A new modular and flexible LSM approach has been developed that allows different microphysics to be easily included in or removed from the model. The approach provides a virtual laboratory where numerical experiments can easily be set up and all measurable quantities visualised. The proposed approach provides a means to simulate complex phenomena such as fracturing or localisation processes, and enables the effect of different micro-physics on macroscopic behaviour to be studied. The initial 2-D model is extended to allow three-dimensional simulations to be performed and particles of different sizes to be specified. Numerical bi-axial compression experiments under different confining pressure are used to calibrate the model. By tuning the different microscopic parameters (such as coefficient of friction, microscopic strength and distribution of grain sizes), the macroscopic strength of the material and can be adjusted to be in agreement with laboratory experiments, and the orientation of fractures is consistent with the theoretical value predicted based on Mohr-Coulomb diagram. Simulations indicate that 3-D numerical models have different macroscopic properties than in 2-D and, hence, the model must be recalibrated for 3-D simulations. These numerical experiments illustrate that the new approach is capable of simulating typical rock fracture behaviour. The new model provides a basis to investigate nucleation, rupture and slip pulse propagation in complex fault zones without the previous model limitations of a regular low-level surface geometry and being restricted to two-dimensions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solid earth simulations have recently been developed to address issues such as natural disasters, global environmental destruction and the conservation of natural resources. The simulation of solid earth phenomena involves the analysis of complex structures including strata, faults, and heterogeneous material properties. Simulation of the generation and cycle of earthquakes is particularly important, but such simulations require the analysis of complex fault dynamics. GeoFEM is a parallel finite-element analysis system intended for solid earth field phenomena problems. This paper describes recent development in the GeoFEM project for the simulation of earthquake generation and cycles.