965 resultados para Bayesian estimation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A flexible and simple Bayesian decision-theoretic design for dose-finding trials is proposed in this paper. In order to reduce the computational burden, we adopt a working model with conjugate priors, which is flexible to fit all monotonic dose-toxicity curves and produces analytic posterior distributions. We also discuss how to use a proper utility function to reflect the interest of the trial. Patients are allocated based on not only the utility function but also the chosen dose selection rule. The most popular dose selection rule is the one-step-look-ahead (OSLA), which selects the best-so-far dose. A more complicated rule, such as the two-step-look-ahead, is theoretically more efficient than the OSLA only when the required distributional assumptions are met, which is, however, often not the case in practice. We carried out extensive simulation studies to evaluate these two dose selection rules and found that OSLA was often more efficient than two-step-look-ahead under the proposed Bayesian structure. Moreover, our simulation results show that the proposed Bayesian method's performance is superior to several popular Bayesian methods and that the negative impact of prior misspecification can be managed in the design stage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider estimating the total load from frequent flow data but less frequent concentration data. There are numerous load estimation methods available, some of which are captured in various online tools. However, most estimators are subject to large biases statistically, and their associated uncertainties are often not reported. This makes interpretation difficult and the estimation of trends or determination of optimal sampling regimes impossible to assess. In this paper, we first propose two indices for measuring the extent of sampling bias, and then provide steps for obtaining reliable load estimates that minimizes the biases and makes use of informative predictive variables. The key step to this approach is in the development of an appropriate predictive model for concentration. This is achieved using a generalized rating-curve approach with additional predictors that capture unique features in the flow data, such as the concept of the first flush, the location of the event on the hydrograph (e.g. rise or fall) and the discounted flow. The latter may be thought of as a measure of constituent exhaustion occurring during flood events. Forming this additional information can significantly improve the predictability of concentration, and ultimately the precision with which the pollutant load is estimated. We also provide a measure of the standard error of the load estimate which incorporates model, spatial and/or temporal errors. This method also has the capacity to incorporate measurement error incurred through the sampling of flow. We illustrate this approach for two rivers delivering to the Great Barrier Reef, Queensland, Australia. One is a data set from the Burdekin River, and consists of the total suspended sediment (TSS) and nitrogen oxide (NO(x)) and gauged flow for 1997. The other dataset is from the Tully River, for the period of July 2000 to June 2008. For NO(x) Burdekin, the new estimates are very similar to the ratio estimates even when there is no relationship between the concentration and the flow. However, for the Tully dataset, by incorporating the additional predictive variables namely the discounted flow and flow phases (rising or recessing), we substantially improved the model fit, and thus the certainty with which the load is estimated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The method of generalized estimating equations (GEEs) provides consistent estimates of the regression parameters in a marginal regression model for longitudinal data, even when the working correlation model is misspecified (Liang and Zeger, 1986). However, the efficiency of a GEE estimate can be seriously affected by the choice of the working correlation model. This study addresses this problem by proposing a hybrid method that combines multiple GEEs based on different working correlation models, using the empirical likelihood method (Qin and Lawless, 1994). Analyses show that this hybrid method is more efficient than a GEE using a misspecified working correlation model. Furthermore, if one of the working correlation structures correctly models the within-subject correlations, then this hybrid method provides the most efficient parameter estimates. In simulations, the hybrid method's finite-sample performance is superior to a GEE under any of the commonly used working correlation models and is almost fully efficient in all scenarios studied. The hybrid method is illustrated using data from a longitudinal study of the respiratory infection rates in 275 Indonesian children.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite great advances in very large scale integrated-circuit design and manufacturing, performance of even the best available high-speed, high-resolution analog-to-digital converter (ADC) is known to deteriorate while acquiring fast-rising, high-frequency, and nonrepetitive waveforms. Waveform digitizers (ADCs) used in high-voltage impulse recordings and measurements are invariably subjected to such waveforms. Errors resulting from a lowered ADC performance can be unacceptably high, especially when higher accuracies have to be achieved (e.g., when part of a reference measuring system). Static and dynamic nonlinearities (estimated independently) are vital indices for evaluating performance and suitability of ADCs to be used in such environments. Typically, the estimation of static nonlinearity involves 10-12 h of time or more (for a 12-b ADC) and the acquisition of millions of samples at high input frequencies for dynamic characterization. ADCs with even higher resolution and faster sampling speeds will soon become available. So, there is a need to reduce testing time for evaluating these parameters. This paper proposes a novel and time-efficient method for the simultaneous estimation of static and dynamic nonlinearity from a single test. This is achieved by conceiving a test signal, comprised of a high-frequency sinusoid (which addresses dynamic assessment) modulated by a low-frequency ramp (relevant to the static part). Details of implementation and results on two digitizers are presented and compared with nonlinearities determined by the existing standardized approaches. Good agreement in results and time savings achievable indicates its suitability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consider a general regression model with an arbitrary and unknown link function and a stochastic selection variable that determines whether the outcome variable is observable or missing. The paper proposes U-statistics that are based on kernel functions as estimators for the directions of the parameter vectors in the link function and the selection equation, and shows that these estimators are consistent and asymptotically normal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a simple method of constructing quasi-likelihood functions for dependent data based on conditional-mean-variance relationships, and apply the method to estimating the fractal dimension from box-counting data. Simulation studies were carried out to compare this method with the traditional methods. We also applied this technique to real data from fishing grounds in the Gulf of Carpentaria, Australia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Robust estimation often relies on a dispersion function that is more slowly varying at large values than the square function. However, the choice of tuning constant in dispersion functions may impact the estimation efficiency to a great extent. For a given family of dispersion functions such as the Huber family, we suggest obtaining the "best" tuning constant from the data so that the asymptotic efficiency is maximized. This data-driven approach can automatically adjust the value of the tuning constant to provide the necessary resistance against outliers. Simulation studies show that substantial efficiency can be gained by this data-dependent approach compared with the traditional approach in which the tuning constant is fixed. We briefly illustrate the proposed method using two datasets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

So far, most Phase II trials have been designed and analysed under a frequentist framework. Under this framework, a trial is designed so that the overall Type I and Type II errors of the trial are controlled at some desired levels. Recently, a number of articles have advocated the use of Bavesian designs in practice. Under a Bayesian framework, a trial is designed so that the trial stops when the posterior probability of treatment is within certain prespecified thresholds. In this article, we argue that trials under a Bayesian framework can also be designed to control frequentist error rates. We introduce a Bayesian version of Simon's well-known two-stage design to achieve this goal. We also consider two other errors, which are called Bayesian errors in this article because of their similarities to posterior probabilities. We show that our method can also control these Bayesian-type errors. We compare our method with other recent Bayesian designs in a numerical study and discuss implications of different designs on error rates. An example of a clinical trial for patients with nasopharyngeal carcinoma is used to illustrate differences of the different designs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider estimation of mortality rates and growth parameters from length-frequency data of a fish stock and derive the underlying length distribution of the population and the catch when there is individual variability in the von Bertalanffy growth parameter L-infinity. The model is flexible enough to accommodate 1) any recruitment pattern as a function of both time and length, 2) length-specific selectivity, and 3) varying fishing effort over time. The maximum likelihood method gives consistent estimates, provided the underlying distribution for individual variation in growth is correctly specified. Simulation results indicate that our method is reasonably robust to violations in the assumptions. The method is applied to tiger prawn data (Penaeus semisulcatus) to obtain estimates of natural and fishing mortality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Macroscopic Fundamental Diagram (MFD) relates space-mean density and flow. Since the MFD represents the area-wide network traffic performance, studies on perimeter control strategies and network-wide traffic state estimation utilising the MFD concept have been reported. Most previous works have utilised data from fixed sensors, such as inductive loops, to estimate the MFD, which can cause biased estimation in urban networks due to queue spillovers at intersections. To overcome the limitation, recent literature reports the use of trajectory data obtained from probe vehicles. However, these studies have been conducted using simulated datasets; limited works have discussed the limitations of real datasets and their impact on the variable estimation. This study compares two methods for estimating traffic state variables of signalised arterial sections: a method based on cumulative vehicle counts (CUPRITE), and one based on vehicles’ trajectory from taxi Global Positioning System (GPS) log. The comparisons reveal some characteristics of taxi trajectory data available in Brisbane, Australia. The current trajectory data have limitations in quantity (i.e., the penetration rate), due to which the traffic state variables tend to be underestimated. Nevertheless, the trajectory-based method successfully captures the features of traffic states, which suggests that the trajectories from taxis can be a good estimator for the network-wide traffic states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this article is to provide a new design framework and its corresponding estimation for phase I trials. Existing phase I designs assign each subject to one dose level based on responses from previous subjects. Yet it is possible that subjects with neither toxicity nor efficacy responses can be treated at higher dose levels, and their subsequent responses to higher doses will provide more information. In addition, for some trials, it might be possible to obtain multiple responses (repeated measures) from a subject at different dose levels. In this article, a nonparametric estimation method is developed for such studies. We also explore how the designs of multiple doses per subject can be implemented to improve design efficiency. The gain of efficiency from "single dose per subject" to "multiple doses per subject" is evaluated for several scenarios. Our numerical study shows that using "multiple doses per subject" and the proposed estimation method together increases the efficiency substantially.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 'pseudo-Bayesian' interpretation of standard errors yields a natural induced smoothing of statistical estimating functions. When applied to rank estimation, the lack of smoothness which prevents standard error estimation is remedied. Efficiency and robustness are preserved, while the smoothed estimation has excellent computational properties. In particular, convergence of the iterative equation for standard error is fast, and standard error calculation becomes asymptotically a one-step procedure. This property also extends to covariance matrix calculation for rank estimates in multi-parameter problems. Examples, and some simple explanations, are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article develops a method for analysis of growth data with multiple recaptures when the initial ages for all individuals are unknown. The existing approaches either impute the initial ages or model them as random effects. Assumptions about the initial age are not verifiable because all the initial ages are unknown. We present an alternative approach that treats all the lengths including the length at first capture as correlated repeated measures for each individual. Optimal estimating equations are developed using the generalized estimating equations approach that only requires the first two moment assumptions. Explicit expressions for estimation of both mean growth parameters and variance components are given to minimize the computational complexity. Simulation studies indicate that the proposed method works well. Two real data sets are analyzed for illustration, one from whelks (Dicathais aegaota) and the other from southern rock lobster (Jasus edwardsii) in South Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The method of generalised estimating equations for regression modelling of clustered outcomes allows for specification of a working matrix that is intended to approximate the true correlation matrix of the observations. We investigate the asymptotic relative efficiency of the generalised estimating equation for the mean parameters when the correlation parameters are estimated by various methods. The asymptotic relative efficiency depends on three-features of the analysis, namely (i) the discrepancy between the working correlation structure and the unobservable true correlation structure, (ii) the method by which the correlation parameters are estimated and (iii) the 'design', by which we refer to both the structures of the predictor matrices within clusters and distribution of cluster sizes. Analytical and numerical studies of realistic data-analysis scenarios show that choice of working covariance model has a substantial impact on regression estimator efficiency. Protection against avoidable loss of efficiency associated with covariance misspecification is obtained when a 'Gaussian estimation' pseudolikelihood procedure is used with an AR(1) structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stallard (1998, Biometrics 54, 279-294) recently used Bayesian decision theory for sample-size determination in phase II trials. His design maximizes the expected financial gains in the development of a new treatment. However, it results in a very high probability (0.65) of recommending an ineffective treatment for phase III testing. On the other hand, the expected gain using his design is more than 10 times that of a design that tightly controls the false positive error (Thall and Simon, 1994, Biometrics 50, 337-349). Stallard's design maximizes the expected gain per phase II trial, but it does not maximize the rate of gain or total gain for a fixed length of time because the rate of gain depends on the proportion: of treatments forwarding to the phase III study. We suggest maximizing the rate of gain, and the resulting optimal one-stage design becomes twice as efficient as Stallard's one-stage design. Furthermore, the new design has a probability of only 0.12 of passing an ineffective treatment to phase III study.