989 resultados para Basis property
Resumo:
The reactive extrusion for polymerization is an integrated polymer processing technology. A new semi-implicit iterative algorithm was proposed to deal with the complicated relationships among the chemical reaction, the macromolecular structure and the chemorheological property. Then the numerical computation expressions of the average molecular weight, the monomer conversion, and the initiator concentration were deduced, and the computer simulation of the reactive extrusion process for free radical polymerization was carried out, on basis of which reactive processing conditions can be optimized.
Resumo:
A series of dianhydride monomers, 2,2'-disubstituted-4,4',5,5'-biphenyltetracarboxylic dianhydride (substituents = phenoxy, p-methylphenoxy, p-tert-butylphenoxy, nitro, and methoxy) were synthesized by the nitration of an N-methyl protected 3,3',4,4'-biphenyttetracarboxylic dianhydride (BPDA) and subsequent aromatic nucleophilic substitutions with aroxides (NaOAr) or methoxide. These dianhydrides were polymerized with various aromatic diamines in refluxing m-cresol containing isoquinoline to afford a series of aromatic polyintides. The effects of varying 2,2'-substituents of the dianhydride (BPDA) moiety on the properties of polyimides were investigated. It was found that polyimides from the dianhydrides containing phenoxy, p-methylphenoxy, and p-tert-butylphenoxy side groups possessed excellent solubility and film forming capability whereas polyimides from 2,2'-dinitro-BPDA and 2,2'-dimethoxy-BPDA were less soluble in organic solvent. The soluble polymers formed flexible, tough and transparent films. The films had a tensile strength, elongation at break, and Young's modulus in the ranges 102-168 MPa, 8-21%, 2.02-2.38 GPa, respectively. The polymer gas permeability coefficients (P) and ideal selectivities for N-2, O-2, CO2 and CH4 were determined for the -OAr substituted polyimides. The oxygen permeability coefficient (P-O2) and permselectivity of oxygen to nitrogen (PO2/N-2) of the films were in the ranges 3.4-11.3 barrer and 3.8-4.6, respectively.
Resumo:
A new-type Mg2Si composite was prepared with Mg-9Al-1Zn (AZ91) alloy and vermiculite as raw materials by melt infiltration method. The results show that the microstructure of composite consists of a large amount Of Mg2Si precipitates and a little amount of MgO embedded in alpha-Mg matrix. The Vickers hardness of the composite is obviously higher than that of matrix of AZ91 alloy. Moreover, the composite exhibits excellent compressive property. The ultimate compressive strength of the material is 290 MPa, the yield strength is 175 MPa, and the elongation is about 5%, which are higher than those of AZ91 alloy.
Resumo:
The thermal stability and ligand binding properties of the L-argininamide-binding DNA aptamer (5'-GATCGAAACGTAGCGCCTTCGATC3') were studied by spectroscopic and calorimetric methods. Differential calorimetric studies showed that the uncomplexed aptamer melted in a two-state reaction with a melting temperature T-m = 50.2 +/- 0.2 degrees C and a folding enthalpy Delta H degrees(fold) = -49.0 +/- 2.1 kcal mol(-1). These values agree with values of T-m = 49.6 degrees C and Delta H degrees(fold) = -51.2 kcal mol(-1) predicted for a simple hairpin structure. Melting of the uncomplexed aptamer was dependent upon salt concentration, but independent of strand concentration. The T of aptamer melting was found to increase as L-argininamide concentrations increased. Analysis of circular dichroism titration data using a single-site binding model resulted in the determination of a binding free energy Delta G degrees(bind) = -5.1 kcal mol(-1). Isothermal titration calorimetry studies revealed an exothermic binding reaction with Delta H degrees(bind) = -8.7 kcal mol(-1). Combination of enthalpy and free energy produce ail unfavorable entropy of -T Delta S degrees = +3.6 kcal mol(-1). A molar heat capacity change of -116 cal mol(-1) K-1 was determined from calorimetric measurements at four temperatures over the range of 15-40 degrees C. Molecular dynamics simulations were used to explore the structures of the unligated and ligated aptamer structures.
Resumo:
We have studied, both experimentally and theoretically, the aggregation morphology of the ABA amphiphilic triblock copolymer in dilute solution by changing the solvent property. Experimental results showed that the micellar morphology changed from spheres to rods and then to vesicles by changing the common solvent from N-N-dimethylformamide (DMF) to dioxane and then to tetrahydrofuran (THF). These controllable aggregates were also obtained by Monte Carlo simulation. The simulative results showed that the solvent property is a key factor that determines the copolymer aggregation morphology. The morphology changed from spheres to rods and then to vesicles by increasing the solvent solubility, corresponding to the change of stretched of the copolymer chains in the micellar cores. This result is in good agreement with the experimental one. Moreover, the simulative results revealed that the end-to-end distant of the ABA triblock copolymer in the vesicle was larger than that in the spheres and rods, indicating that the copolymer chains were more stretched in vesicles than in the spheres and rods. Furthermore, we gave the distribution of the fraction of the chain number with the end-to-end distance. The results indicated that the amount of folded chains is almost the same as that of stretched chains in the vesicle. Although most chains were folded, stretched chains could be found in the rod and sphere micelles.
Resumo:
YVO4 nanocrystals doped with 10.0 mol% Eu3+ have been synthesized from an aqueous solution of ( Y, Eu)( NO3) (3) and NH4VO3 with or without ultrasonic irradiation. The ultrasonic irradiation has a strong effect on the morphology of the YVO4: Eu particles. The spindle-like particles with an equatorial diameter of 90 - 150 nm and a length of 250 - 300 nm could be obtained with ultrasonic irradiation, whereas only nanoparticles were produced without ultrasonic irradiation. The photoluminescence intensity of YVO4: Eu of the spindle-like particles was largely improved compared with that of the nanoparticles. The possible formation mechanism of the spindle-like particles of YVO4: Eu with the application of ultrasonic irradiation was discussed in this paper.
Resumo:
One inorganic-organic hybrid and two host-guest complexes were synthesized from calix[4] arene tetra acetic ether derivative( C60H80O12, L) and potassium polyoxometalates. The structures of the complexes were characterized with the elemental analysis, IR, TG-DTA and X-crystallographic. X-ray crystallographic studies reveal the formation of an ionic crystal, which contains a calix-cluster and calix-cluster-calix line array, and belongs to a typical inorganic-organic hybrid ( complex 1) or has a host-guest structure ( complex 2 and 3). The results of cyclic voltammograms at different scanning rates showed that the anode peak current of complex 1 was proportional to the square root of the scanning rate and the charge transfer process was controlled by pervasion. The anode peak current of complexes 2 and 3 was proportional to the scanning rate and the charge transfer process was controlled by the surface. The results suggest that there are consanguineous relationship between the anode reaction and the structure.
Resumo:
A series of biodegradable polyurethanes (PUs) are synthesized from the copolymer diols prepared from L-lactide and epsilon-caprolactone (CL), 2,4-toluene diisocyanate, and 1,4-butanediol. Their thermal and mechanical properties are characterized via FTIR, DSC, and tensile tests. Their T(g)s are in the range of 28-53 degrees C. They have high modulus, tensile strength, and elongation ratio at break. With increasing CL content, the PU changes from semicrystalline to completely amorphous. Thermal mechanical analysis is used to determine their shape-memory property. When they are deformed and fixed at proper temperatures, their shape-recovery is almost complete for a tensile elongation of 150% or a compression of 2-folds. By changing the content of CL and the hard-to-soft ratio, their T(g)s and their shape-recovery temperature can be adjusted. Therefore, they may find wide applications.
Resumo:
A PEO-tethered layer on a PDMS (polydimethylsiloxane) cross-linked network has been prepared by a swelling-deswelling process. During swelling, the PDMS block of a PDMS-b-PEO diblock copolymer penetrates into the PDMS substrate and interacts with PDMS chains because of the van der Waals force and hydrophobic interaction between them. Upon deswelling, the PDMS block is trapped in the PDMS matrix while the PEO, as a hydrophilic block, is tethered to the surface. The PEO-tethered layer showed stability when treated in water for 16 h. The surface fraction of PEO and the wetting property of the PEO-tethered PDMS surface can be controlled by the cross linking density of the PDMS matrix. A patterned PEO-tethered layer on a PDMS network was also created by microcontact printing and water condensation figures (CFs) were used to study the patterned surface with different wetting properties.
Resumo:
By adding a small amount of multiwall carbon nanotubes (MWNTs) to polyethylene oxide (PEO) and a salt system, a new type of nanocomposite film was constructed. At ambient temperature, the conductivity of the PEO-salt-0.5 wt % MWNTs was nearly three orders of magnitude higher than that of the PEO-salt system. The conductive property of the nanocomposite film was characterized by ac impedance and the differential scanning calorimetry technique.
Resumo:
A novel 3D supramolecular assembly constructed from decavanadate and caffeine building blocks, (NH4)(2)(C8H10N4O2)(4)[H4V10O28].2H(2)O (1), has been synthesized in aqueous solution and characterized by elemental analysis, IR, H-1 NMR, V-51 NMR, TG-DTA, and single crystal X-Ray diffraction. The compound 1 crystallizes in monoclinic system, space group P2(1)/n, a = 15.801(1) Angstrom, b = 12.914(1) Angstrom, c = 15.913(2) Angstrom, beta = 113.55degrees, V = 2976.4 (5) Angstrom(3), Z = 2, R = 0.0498 with 6818 reflections. Water molecules, ammonium ions, and caffeine act as "cement" linking the polyanions into 1D chain along the c-axis by hydrogen bonding. In compound 1, extensive hydrogen-bond contacts and strong pi-pi interactions lead to an ordered 3D supramolecular framework. TG-DTA curves indicate that the weight loss of the complex can be divided into three stages.
Resumo:
High-performance polyimide fibers possess man), excellent properties, e.g., outstanding thermal stability and mechanical properties and excellent radiation resistant and electrical properties. However, the preparation of fibers with good mechanical properties is very difficult. In this report, a biphenvl polyimide from 3,3',4,4'-biphenyltetracarboxylic dianhydride and 4,4'-oxydianiline is synthesized in p-chlorophenol by one-step polymerization. The solution is spun into a coagulation bath of water and alcohol via dry-jet wet-spinning technology. Then, the fibers are drawn in two heating tubes. Thermal gravimetric analysis, thermal mechanical analysis, and dynamic mechanical analysis (DMA) are performed to study the properties of the fibers. The results show that the fibers have a good thermal stability at a temperature of more than 400degreesC. The linear coefficient of thermal expansion is negative in the solid state and the glass transition temperature is about 265degreesC. DMA spectra indicate that the tandelta of the fibers has three transition peaks, namely, alpha, beta, and gamma transition. The alpha and gamma transition temperature, corresponding to the end-group motion and glass transition, respectively, extensively depends on the applied frequency, while the beta transition does not.
Resumo:
Unusual 3D flower-shaped SnS2 nanostructures have been synthesized using a mild hydrothermal treatment in the presence of octyl-phenol-ethoxylate ( Triton X-100) at 160 degrees C. The nanostructures have an average size of 1 mu m, and consist of interconnected nanosheets with thicknesses of about 40 nm. Based on time-dependent experimental results, we ascribe the oriented attachment mechanism to the growth of the SnS2 nanostructures. The nonionic surfactant Triton X-100 plays a key role in the formation of the flower-like morphology. Room temperature gas-sensing measurements show that the 3D SnS2 nanostructures could serve as sensor materials for the detection of NH3 molecules.
Resumo:
A new photoluminescent heterobimetallic Zn(II)-Ag(I) cyano-bridged coordination polymer, [Ag5Zn2(tren)(2)(CN)(9)] (tren = tris(2-aminoethyl)amine) (1), has been synthesized and structurally characterized. It features rare linear pentameric unit of dicyanoargentate(I) ions assembled by d(10)-d(10) interaction as building blocks. Solid state emission spectrum of I shows strong ultraviolet luminescence with emission peak in the range of 376 nm.