999 resultados para B. spinosus


Relevância:

20.00% 20.00%

Publicador:

Resumo:

人类向大气中排放的大量氮氧化合物和氟氯烃类化合物(CFC’s)引起臭氧分子的分解,导致到达地球表面的紫外辐射增加,特别是UV-B射增强。本项目以青杨组杨树为模式植物,从形态和生理方面研究了来自不同UV-B景下的康定杨与青杨在增强UV-B的反应及其反应差异,并探讨了干旱、施肥对它们抗UV-B力的影响。杨树具有分布广、适应性强、在生态环境治理和解决木材短缺方面均占有重要位置,研究成果可为生态系统的恢复与重建提供理论依据和科学指导。主要研究结果有以下: 1. 在温室中经过增强UV-B理,杨树的外部形态及生理活动受到了一定程度的影响。增强UV-B致康定杨、青杨的生物量、叶面积及节间长度降低,叶片增厚,SOD活性升高,膜伤害增加,而对叶片数目、R/S、叶绿素A、叶绿素B整个叶绿素含量没有影响。两种杨树对UV-B迫的响应存在差异:在增强UV-B件下,青杨的植株高度、生物量、叶面积、脯氨酸含量、长期用水效率受到的影响大于康定杨,相比而言,康定杨在比叶面积、叶片厚度、可溶性糖含量、UV-B收物质的含量及SOD和GPX活性方面增加的程度大于青杨。这些区别说明,来自于高海拔的康定杨比来自于低海拔的青杨对增强UV-B 具有更强的耐性。我们认为二者在叶片厚度、比叶面积、UV-B收物质含量及SOD、GPX活性差异是导致对增强UV-B性不同的原因。 2. 干旱与增强UV-B杨树的生长和生理特性均产生了影响,而且两种胁迫共同作用时干旱表现减弱或加剧了UV-B杨树某些形态和生理特性的影响。 据试验结果,干旱显著地降低了杨树的株高、叶片数目、叶面积,增加了叶片厚度,促进ABA的积累,提高了CAT活性。对于干旱,两种杨树之间也表现出了一定的差异性。可溶性蛋白质和脯氨酸在青杨叶片中得到显著积累,而在康定杨中没有变化。此外,CAT、长期用水效率在康定杨中受到的影响更加明显。长期用水效率的不同变化趋势说明两种杨树对水分胁迫采用了不同的用水策略,康定杨采用的是节水用水策略,提高用水效率,而青杨采用的是耗水的用水策略。根据干旱对叶面积、脯氨酸、ABA含量、CAT活性及长期用水效率等方面的影响,我们认为来自高海拔地区的康定杨比来自低海拔的青杨有更大的耐旱性,这是对生长环境长期适应的结果。在高海拔地区,因霜冻常带来土壤水分不可利用,降低了根系对水分的吸收,树木容易受到的生理性干旱。另外,高海拔的地区低的气温使植株对严寒有较强的耐性,减少了水分的需要。 生长于增强UV-B的康定杨和青杨植株表现为高度降低,叶面积缩小,比叶面积增加;叶片栅栏组织、海绵组织均受到增强UV-B影响,其厚度的增加导致整个叶片变厚。增强UV-B显著提高了杨树的APX活性、UV-B收物质含量,而对叶片数目、ABA、可溶性蛋白质含量及CAT活性没有产生影响。试验中也观察到了两种杨树对增强UV-B应的差异:与康定杨相比,在增强UV-B青杨株高、叶面积降低的程度更大一些,SOD活性显著提高。另外UV-B收物质受到的影响不同。根据这些差别,高海拔的康定杨(3500 m)比来自低海拔的青杨(1500 m)增强UV-B较强的耐性。 与水分充足情况下UV-B植株的影响相比,干旱对杨树抗增强UV-B生了一定的影响,表现为加剧或减弱UV-B植物的影响,但这种影响与形态、生理指标有关。当干旱与增强UV-B同作用时,杨树植株的株高、叶面积进一步降低、叶片进一步增厚。就脯氨酸的积累的而言,在没有水分胁迫时,增强UV-B使它显著增加,而在干旱处理下这种效果变得不明显。干旱对增强UV-B影响还与杨树的种类有一定的关系。在康定杨中,干旱减弱了增强UV-B栅栏组织与海绵组织的影响,且在植株高度、叶面积上表现出累加效应,而在CAT上交互作用显著;但在青杨中干旱则加剧增强UV-B栅栏组织与海绵组织的影响,在植株高度、叶面积及比叶面积上表现出显著的交互作用。据碳同素分析,在水分充足的条件下,无论是康定杨,还是青杨,增强UV-B导致其长期用水效率的提高,然而当两种胁迫共同作用时,长期用水效率则表现出差异,在青杨中,长期用水效率得到进一步增高,而康定杨中干旱的效应被增强UV-B减轻。 3. 田间试验表明,杨树的生长、生理特征都受到养分和增强UV-B影响。施肥对杨树的影响表现为:提高了叶面积、生物量及SOD的活性,降低了抗坏血酸含量。对于施肥作用,两种杨树的反应也有区别:在康定杨中施肥显著增加了的叶片长度、宽度及光合色素的含量,降低了净光合速率、气孔导度及胞间CO2浓度;在青杨中,则SOD、GPX、APX活性表现增加。从试验看出,施肥对来自于高海拔地区的康定杨(3500 m)的影响较大,对来自低海拔的青杨(1500 m)影响较小,这与它们对原产地的生境适应有一定关系。在康定杨生长的高海拔地区,低温度和湿度不能为地上凋落物或土壤中的根分解提供理想的条件,造成当地土壤的低养分状况,所以当肥料施用以后,效果显著。 经过增强UV-B理,杨树叶片中UV-B收物质含量、GPX的活性得到提高,而脯氨酸、丙二醛、可溶性蛋白质、叶绿素及类胡萝卜素含量没有受到影响。对于增强UV-B种杨树受到的影响也有所不同:在青杨中增强UV-B致叶面积缩小,生物量、净光合速率降低,APX的活性及长期用水效率的提高,而对康定杨的这些指标没有产生显著影响,相反抗氧化酶的活性明显高于青杨。这些差异性是由于两种杨树对原产地不同UV-B景的长期适应结果。康定杨长期生长在较高UV-B境中,对UV-B较强的耐性。而青杨适应于较低的UV-B境,对增强UV-B为敏感。 试验中施肥也影响了植株对增强UV-B反应,不过这种影响与杨树的种类及测定指标有一定的相关性。例如,在缺肥的情况下,青杨的长期用水效率和康定杨的叶绿素含量都受到增强UV-B显著影响,而施肥以后这种影响变得不显著。在缺肥的条件下,GPX、APX在青杨中的活性、GPX在康定杨中的活性对增加UV-B应不敏感;而施肥以后则变化显著,同样胞间CO2浓度在康定杨也有类似的变化。 For past decades, Ultraviolet radiation, especially UV-B reaching the Earth’s surface increased because of depletion of ozone layer resulted from emission of NxO and CFC’s from human activities. In this experiment, different species of Populus section Tacamahaca Spach from different UV-B background were selected as a model plant to assess the effects of enhanced UV-B radiation. Morphological and physiological traits induced by enhanced UV-B were observed and the different responses between P. kangdingensis and P. cathayana were discussed, furthermore the influences of drought and fertilizer on responses induced by enhanced UV-B were studied. Since poplars play an important role in lumber supply, and are important component of ecosystems due to their fast growth and wide adaptation, the study could provide a strong theoretical evidence and scientific direction for the afforestation, and rehabilitation of ecosystem. The results are as follows: 1. The experiment conducted in a greenhouse indicated that morphological and physiological traits of two poplars were affected by enhanced UV-B radiation. Enhanced UV-B radiation not only reduced biomass, leave area and internode length, but also increased leaf thickness and SOD activity as well as MDA concentration and electrolyte rate. However, no significant changes in leaf numbers, root shoot ratio, and total chlorophyll and chlorophyll component were observed. There were different responses to enhanced UV-B radiation between two species. Compared with P. kangdingensis, cuttings of P. cathayana, exhibited lower height increment and smaller leaf area. In addition, there were significant differences in free proline, soluble protein, and UV-B absorbing compounds, and the activity of SOD and GPX, long-term WUE between them. Differences in plant height, biomass, leaf area, free proline concentration, and long-termed WUE showed that P. cathayana were more affected by enhanced UV-B radiation than P. kangdingensis. In contrast, more increase of specific leaf mass, leaf thickness, and soluble sugar, and UV-B absorbing compounds, and activity of SOD and GPX were observed in P. kangdingensis. According to these results, we suggested that P. kangdingensis from high elevation, which adapted to higher UV-B environments, had more tolerance to enhanced UV-B than P. cathayana from low elevation, which adapted to lower UV-B environment. We believe it was the difference of leaf thickness, specific leaf mass, and UV-B absorbing compounds as well as the activity of SOD and GPX resulted in lower adaptation of P. cathayana to enhanced UV-B radiation. 2. Growth and physiological traits of two poplars were affected by both drought and enhanced UV-B radiation. Moreover, it was observed that when two stresses applied together drought could exacerbate UV-B effects or decrease sensitivity to UV-B. In the experiment, drought significantly decreased plant height, leaf numbers, leaf area, and increased leaf thickness, and ABA, and CAT activity of two poplars. There were significant interspecific differences to drought stress. Exposed to drought, soluble protein and proline concentration were increased in P. cathayana but not in P. kangdingensis. However, more changes in CAT and long-term WUE were observed in kangdingensis. Different change in long-term WUE suggests that two poplars adapted different water-use strategies. P. kangdingensis employ a conservative water-use strategy, whereas P. cathayana employ a prodigal water-use strategy. Based on the differences in leaf area, accumulation of free proline and ABA, CAT activity as well as long-term WUE, we believed that P. kangdingensis from high elevation had a greater tolerance to drought than P. cathayana from low elevation,which is the result of adaptation to local environment. In high elevation area, trees are prone to suffer from physiological drought because of un-movable water caused by frost. Besides lower temperature enable the plants had greater adaptability to frost as a results the requirement of water is reduced Enhanced UV-B radiation decreased shoots height, leaf area, and increased specific leaf mass and thickness of palisade and sponge layer as well as APX activity and UV-B absorbing compounds in both species. Whereas, leaf numbers, ABA content, soluble protein and CAT activity showed no differences to enhanced UV-B radiation. Interspecific differences were also observed. Compared with P. kangdingensis, P. cathayana showed lower shoot height and smaller leaf area, higher SOD activity. Besides, variation in UV-B absorbing compounds was found. These differences suggested that P. kangdingensis from high elevation (3500 m) was more tolerant to enhanced UV-B radiation than P. cathayana from low elevation (1500 m). Compared with morphological and physiological changes induced by enhanced UV-B radiation under well-watered conditions, drought exacerbated or decreased these changes. However, these effects vary with parameters measured. When two stresses applied together, shoot height and leaf area further decreased while leaf thickness further increased. Under well-watered conditions, enhanced UV-B radiation significantly increased proline content, but such effect was not observed under drought conditions. The effect of drought on enhanced UV-B radiation was related to species. For example, drought reduced the effects of enhanced UV-B radiation on palisade parenchyma and sponge mesophyll in P. kangdingensis, and additive effects in shoot height and leaf area and interactive effect CAT activity were observed. In contrast, for P. cathayana drought significantly exacerbated the effects of enhanced UV-B radiation on palisade parenchyma and sponge mesophyll; there were noticeable interaction in shoot height, leaf area and specific leaf mass. As far as long-term WUE is concerned, it was increased by enhanced UV-B radiation under well-watered conditions in both species. While different effect was observed between two species in combination of two stresses. Long-term water use efficiency was further increased in P. cathayana whereas the effect was less significant in P. kangdingensis. 3. The field experiment showed that growth and physiological traits of poplars were affected by nutrition and enhanced UV-B radiation. Fertilization significantly increased leaf area, biomass and SOD activity, reduced Ascorbic acid concentration. There was interspecific difference in response to fertilization. For P. kangdingensis, fertilization significantly increased leaf width, leaf length and photosynthetic pigments content while net photosynthetic rate and stomatal conductance, intercellular CO2 concentration were significantly decreased. However, for P. cathayana, these parameters were unaffected except the increase of SOD, GPX and APX activity. From above, it could concluded that P. kangdingensis from high elevation was more affected by fertilization than P. cathayana, This difference was due to adaptation to local environment., The low temperature and moisture where P. kangdingensis was collected can not provided optimum to decompose roots and litter fall as a result the nutrition in soil was poor. Exposed to enhanced UV-B radiation, for both species UV-B absorbing compounds and GPX activity were significantly increased while proline, MDA, soluble protein, chlorophyll, carotenoids were not affected. Different responses were also observed between the two species. Enhanced UV-B radiation caused significant decreases in leaf area, biomass, net photosynthetic rate and increase in APX activity and long-term WUE in P. cathayana but not in P. kangdingensis. In addition, activity in antioxidant enzymes was much higher in P. kangdingensis than in P. cathayana. In the experiment fertilization affected responses of cuttings to enhanced UV-B radiation, but it concern species and parameters measured. Long-term WUE in P. cathayana and chlorophyll in P. kangdingensis were significantly increased by enhanced UV-B radiation under non-fertilization treatments while the increase was not found under fertilization treatment. In contrast, under no fertilization treatment enhanced UV-B radiation did not affected GPX and APX activity in P. cathayana and GPX in P. kangdingensis while significant increase appeared after application of fertilization. Similar effect of enhanced UV-B radiation on intercellular CO2 concentration in P. kangdingensis was observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

植物生长和生产力受到自然界各种形式的生物和非生物胁迫因子的影响。这些胁迫包括低温、高温、盐碱、干旱、洪水、重金属、虫害、病害和紫外线辐射等等。而人类活动大大加剧了这些胁迫所带来的影响。由于人类污染而导致臭氧层衰减以及由此产生的地球表面紫外辐射增强已经成为全球气候变化的一个主要方面。UV-B迫,甚至当前的辐射水平,所带来的影响已经引起科学工作者的广泛关注。 为了生存和繁殖,植物不得不面临环境中各种潜在胁迫所带来的负面影响。然而,植物生活型的不可移动性决定了其逃避胁迫的局限性。因此,绝大多数植物都是通过对胁迫作出反应,通过修复或者更新组织来降低伤害。而植物应对环境变化的能力则是由其生长模式的种属特异性和本身的遗传组成所决定。在自然界,植物常常同时面临多种胁迫,这些胁迫所引发的植物反应可能具有叠加、协同或者拮抗作用。沙棘是一种具刺、具有固氮功能的多年生雌雄异株灌木,广泛分布于亚欧大陆的温带地区和亚洲亚热带的高海拔地区。在中国,沙棘常常被用作植被恢复中的先锋树种而大量栽培。本文采用沙棘作为模式植物,试图探索木本植物对低温,UV-B射增强以及其与干旱的复合胁迫的响应以及沙棘对这些胁迫响应是否具有种群差异性。 对来自南北两个种群的沙棘进行短日照和低温处理,检测了其在抗寒锻炼和抗寒性发育过程中存在的性别差异。结果表明,短日照和低温都分别能够诱导抗寒锻炼的发生,而两者同时存在对所有实验植株抗寒性的大小具有叠加效应。然而,短日照和低温所诱导的抗寒性在两个种群中都具有性别差异性,雄性植株比雌雄植株对短日照和低温更为敏感。同时,南北种群间也存在差异性,北方种群的植物比南方种群的植物对短日照和低温敏感,从而在短日照下抗寒锻炼的发生时间更早,低温诱导的抗寒性更大。短日照和低温诱导植物增加抗寒性的同时伴随着脱落酸的变化。脱落酸的变化因处理,种群和性别的不同而不同。这些生理反应表明不同的沙棘种群,不同的植株性别对同一环境胁迫可能存在不同的生存策略。 比较了来自高低两个海拔的沙棘种群对于干旱和UV-B射增强以及两者复合胁迫条件下的生理生态反应。干旱使两个种群中植株总的生物量,总叶面积,比叶面积,叶片含碳量,含磷量,木质素含量和碳氮比显著降低,使根冠比,粗根细根比和叶片脱落酸含量显著增加。干旱而非UV-B得δ13C 值显著增加。但是,比较而言,来自高海拔的种群对干旱反应更为强烈,而来自低海拔的种群对UV-B敏感。在UV-B射增强的处理下,干旱所诱导的脱落酸的积累被显著抑制。而且我们检测到在一些指标上存在显著的干旱×UV-B互作用,如两个种群中在总生物量上,低海拔种群中在总叶面积,粗根细根比上,高海拔种群中在比叶面积,δ13C值,木质素含量上都存在明显的交互作用。这些结果表明这两个种群对胁迫具有不同的适应性反应,来自高海拔的种群比来自低海拔的种群更能够抵御干旱和UV-B迫。 室外实验表明,UV-B 去除/增补对沙棘高低两个海拔种群的影响都不大。对生物量的积累,植株高度以及一些常见的胁迫反应生理指标比如丙二醛、ABA 和游离脯氨酸都没有显著影响。UV-B 的效应比UV-A 大,植物反应在无UV 和仅有UV-A 的处理间没有什么区别。然而,UV-B 去除的两个处理和UV-B 存在的两个处理间存在显著区别。UV-B 使得两个种群都显著降低了比叶面积(SLA),但却使长期用水效率增加。但UV-B光合色素和光合系统II 的影响不大。总体看来,来自低海拔的种群对UV-B 更为敏感。 Plant is adversely affected by various abiotic and biotic stress factors. These stressors includelow temperature, heat, salt, drought, flooding, heavy metal toxicity, wounding by herbivores,infecting by pathogenic microorganisms, ultraviolet (UV) radiation and so on. Variousanthropogenic activities have accentuated the existing stress factors. One of the mostimportant aspects of global change is that of stratospheric ozone depletion caused by seriousanthropogenic pollution and the resulting increase in UV radiation reaching the surface of theEarth. Scientists have become concerned about the effects that considerable UV-B stress, evenat current levels. In order to survive and reproduce, plants have to be able to cope with lots of potentiallyharmful stress factors that are almost constantly present in their environment. Most plants’responses under stress are to neutralize the stress, repairing the damage or regrowing newtissue rather than to avoid it due to their sessile life style. The plant defense capacity dependson plant-specific modular growth patterns and genetic make-up that allows for flexibleresponses to changing environments. Plants usually encounter several stresses simultaneouslyunder field conditions, and the stresses may cause a variety of plant responses, which can beadditive, synergistic or antagonistic. Sea buckthorn (Hippophae rhamnoides L.), a thorny nitrogen fixing deciduously perennialshrub, which is widely distributed throughout the temperate zones of Asia and Europe and thesubtropical zones of Asia at high altitudes. It has been widely used in forest restoration as thepioneer species in China. In this paper, we used sea buckthorn as a model, tried to get some understand of how plants fight low temperature, enhanced UV-B radiation level and thatcombination of drought. And also, want to know whether does there exist some populationspecific responses to such stressors. Sexual differences in cold acclimation and freezing tolerance development of two contrastingsea buckthorn (Hippophae rhamnoides L.) ecotypes from northern and southern regions inChina were recorded after exposure to short day photoperiod (SD) and low temperature (LT).The results demonstrated that cold acclimation could be triggered by exposing the plants toSD or LT alone, and that a combination of both treatments had an additive effect on freezingtolerance in all plants tested. However, development of freezing tolerance was dependent onthe sex of plants under SD and LT, the males were clearly more responsive to SD and LT thanthe females in both ecotypes studied. On the other hand, development of freezing tolerancewas also ecotype-dependent, the northern ecotype was more responsive to SD and LT than thesouthern ecotype, resulting in earlier cold acclimation under SD and higher freezing toleranceunder LT. Moreover, development of freezing tolerance induced by SD and LT wasaccompanied by changes in ABA levels. These alterations in ABA levels were different indifferent treatments, ecotypes and sexes. Therefore, the differences in SD and LT-inducedphysiological responses showed that the different ecotypes and the different sexes mightemploy different survival strategies under environmental stress. Two contrasting populations from the low and high altitudinal regions were employed toinvestigate the effects of drought, UV-B and their combination on sea buckthorn. Droughtsignificantly decreased total biomass, total leaf area, specific leaf area,leaf carbon (C),phophous (P), lignin content and the ratio of C: N in both populations, and increasedroot/shoot ratio, fine root/coarse root ratio and abscisic acid content (ABA), in bothpopulations. Drought but not UV-B resulted in significantly greater carbon isotopecomposition (δ13C) values in both populations. However, the high altitudinal population wasmore responsive to drought than the low altitudinal population. The drought-inducedenhancement of ABA in the high altitudinal population was significantly suppressed in thecombination of drought and elevated UV-B. Moreover, significant drought × UV-B interactionwas detected on total biomass in both populations, total leaf area and fine root/coarse root inthe low altitudinal population, specific leaf area, δ13C value and leaf lignin content in the high altitudinal population. These results demonstrated that there were different adaptive responsesbetween two contrasting populations, the high altitudinal population exhibited highertolerance to drought and UV-B than the low altitudinal population. A field experiment was conducted to investigate effects of UV-B exclusion/supplementationon two altitudinal populations of sea buckthorn. UV-B exclusion or supplementation had littleeffects on both populations investigated. For instance, the total biomass, plant height andsome physiological index such as Malondialdehyde (MDA), ABA and free proline were notchanged significantly. The UV-B effects are more significant than that of UV-A, nodifferences were found between treatments of excluded UV and excluded UV-B. However,compared with treatments of UV-B exclusion (including absent of UV-B and all UV band),the present of UV-B (including near ambient environment and enhanced UV-B) significantdecreased specific leaf area, and increased long time water use efficiency as evaluated by δ13Cvalue. UV-B had little effects on photosynthetic pigments and Photosystem II (PSII). The lowaltitude population is more sensitive to UV-B than that of the high altitude population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

臭氧层损耗导致的地球表面UV-B射增强以及温室气体增多引起的气候变暖是当今两大全球环境问题。UV-B射增强和气候变暖对陆地植物和生态系统产生深远影响,并已成为全球变化研究的重要议题。作为世界第三极的青藏高原,UV-B 辐射增强以及气候变暖现象尤为突出。本试验所在林区是青藏高原东缘的主要林区,具有大面积的亚高山人工针叶成熟林,在全球变化背景下该森林的天然更新潜力如何是急待回答的重要问题。基于此,本研究围绕森林树种的种子和幼苗这一更新的重要阶段,开展了气候变暖、UV-B射增强和联合胁迫对云杉种子萌发及幼苗定居影响的研究,旨在全球变化背景下,探讨全球变暖、UV-B 辐射增强和联合胁迫是否对西南地区大面积人工亚高山针叶林更新的种子萌发和幼苗定居阶段产生影响。 本文以青藏高原东缘亚高山针叶林主要树种云杉为研究对象,研究云杉种子萌发及幼苗的生长和生理对UV-B射增强与气候变暖的响应。采用UV-B光灯(UV-lamp)来模拟增强的UV-B 辐射,此外,采用开顶式有机玻璃罩(OTCs)来模拟气候变暖。本试验包括四个处理:(1)大气UV-B 辐射+大气温度(C);(2)大气UV-B 辐射+模拟气候变暖(W);(3)增强的UV-B射+大气温度(U);(4)增强的UV-B射+模拟气候变暖(U+W)。 根据本试验结果,UV-B射增强对云杉种子萌发没有显著影响,它对萌发云杉幼苗的影响主要体现在幼叶展开以后。根据两年的试验结果,增强的UV-B射降低了云杉幼苗抗氧化酶活性,降低了抗氧化物质的含量,此外,造成了膜质的过氧化,表现为MDA在针叶中的积累。增强的UV-B射处理萌发云杉幼苗两年后,幼苗的生长受到显著抑制。我们的结果显示,OTCs分别提高了空气(10 cm)和土壤(5 cm)温度1.74℃和0.94 ℃。增温显著地促进了云杉种子提前萌发,提高了萌发速率和萌发比率,而且,明显地促进了幼苗的生长,表现为株高和生物量累积的显著增长。此外增温还有利于云杉幼苗根的伸长生长以及生物量的累积,这可以使云杉幼苗更好地利用土壤中的水分和营养元素。 根据本试验结果,温度升高显著地促进了增强UV-B射下云杉萌发幼苗的生长,这说明,温度升高缓解了UV-B射增强对云杉萌发幼苗的负面影响。这种缓解作用可能是温度升高对UV-B射增强处理下幼苗的抗氧化系统活性改善的结果。温度升高还缓解了高UV-B射对云杉幼苗根生长的抑制作用,这也可能是增温缓解伤害的原因之一。此外,根据我们的试验结果,增温与UV-B射增强联合作用(U+W)下云杉萌发幼苗的生长状况好于大气温度与大气UV-B射联合(C)处理,表现为株高、地径、根长和生物量积累均高于C处理,因此可以推断,UV-B射增强与气候变暖同时存在对萌发幼苗在两年之内的生长没有产生抑制作用,也就是说,气候变暖的缓解作用完全弥补了UV-B射增强的有害作用。 同样,增强的UV-B射显著影响了云杉幼苗的光合作用,表现为净光合速率(Pn)和表观量子效率(Φ)的提高,此外,根据我们的试验结果,它还造成了PSII的光抑制。增强的UV-B射显著抑制了云杉幼苗对营养元素的吸收,表现为大量营养元素、碳、钙、镁和锌含量的降低,但是,它却显著促进了铁在植株体内的积累。增温显著地提高了净光合速率,但是,它对光系统II(PSII)的光化学效率影响不大。温度升高缓解了UV-B强对云杉幼苗光合作用的伤害,表现为净光合速率、表观量子效率以及PSII光化学效率的提高。此外,温度升高还缓解了UV-B射增强对离子吸收的抑制作用。 Enhanced UV-B radiation due to the reduction of O3 layer and global warming induced by increased greenhouse gases in the air have become the two pressing aspects of global climate changes. Moreover, enhanced UV-B radiation and warming have profound and long-term impacts on terrestrial plants and ecosystems, and the studies focusing on the two factors have attracted many attentions. Qinghai-Tibetan Plateau is the third in elevation in the world, and enhanced UV-B radiation and climate warming are especially prominent in this region. Our research located in the main forest belt in the eastern Qinghai-Tibetan Plateau where large areas of subalpine coniferous forests distributed. Based on that, we carried out a research to study the effects of enhanced UV-B radiation and climate warming on seed germination and seedlings growth of seedlings which are the important basic stage in forest regeneration. This research was arranged by a complete factorial design and included two factors (UV-B radiation and temperature) with two levels. The UV-lamps were used to manipulate the supplemental UV-B radiation and open-top chambers (OTCs) were adopted to increase temperature. The four treatments were: (1) C, ambient UV-B without warming; (2) U, enhanced UV-B without warming; (3) W, ambient UV-B with OTCs warming; (4) U+W, enhanced UV-B with OTCs warming. The main results were exhibited as follows: 1. Based on our results in this research, OTCs increased temperature on average 1.74℃ in air (10 cm above ground) and 0.92 ℃ in soil (5 cm beneath ground). Furthermore, OTCs also slightly reduced soil moisture and relative air humidity, however, the differences was not statistically significant. 2. Our results showed that enhanced UV-B had no significant effects on the seeds germination of P. asperata. Enhanced UV-B affected sprouts of P. asperata until the needles unfolded. During two years, enhanced UV-B inhibited the efficiency of the antioxidant defense systems, and as a result, it induced oxidant stress and the accumulation of MDA in needles. After two years of exposure to enhanced UV-B, the growth of P. asperata sprouts was markedly restrained compared with those under ambient UV-B radiation and temperature (C). Warming significantly stimulated the germination speed and increased the germination rate of P. asperata seeds. In the next place, it prominently facilitated the growth of P. asperata sprouts, represented as improvements in stem elongation and biomass accumulation. Furthermore, warming also increased root growth of P. asperata sprouts, which could made sprouts more efficient to use water and nutrient elements in soil. In this research, warming alleviated the deleterious effects of enhanced UV-B on P. asperata sprouts. It markedly stimulated the growth of P. asperata sprouts exposed to enhanced UV-B. The ease effects of warming on the abilities of the antioxidant defense systems might account for its amending effects on growth. After two years of exposure to enhanced UV-B radiation and warming, the growth of P. asperata sprouts was better than those under ambient UV-B radiation without warming (C), which could be seen from the higher plant height, basal diameter, root length and total biomass accumulation compared with C. 3. Enhanced UV-B radiation significantly influenced the photosynthesis processes of two-year old P. asperata seedlings. Our results showed that enhanced UV-B reduced the net photosynthetic rate (Pn) and the apparent quantum efficiency (Φ), and induced photoinhibition of photosynthetic system II (PSII). Enhanced UV-B significantly decreased the concentration of nitrogen (N), phosphorous (P), potassium (K), calcium (Ca), magnesium (Mg) and zinc (Zn), however, it increased the accumulation of iron (Fe) in the whole plant of P. asperata seedlings. Warming significantly stimulated Pn of P. asperata seedlings but it had no prominent impacts on the photochemical efficiency of PSII. In our research, warming also alleviated the harmful effects of enhanced UV-B on photosynthesis and absorption of ions of P. asperata seedlings. It increased Pn, Φ and the photochemical efficiency of PSII in seedlings exposed to enhanced UV-B. Moreover, warming also increased the absorption of ions of the seedlings exposed to enhanced UV-B radiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

光是植物赖以生存的重要环境因子,但是植物在获得光的同时不可避免的会受到紫外辐射的伤害。尤其是近年来,人类向大气中排放的大量氮氧化合物和氟氯烃类化合物(CFC’s)引起臭氧分子的分解,导致到达地球表面的紫外辐射增加,特别是UV-B射增强。而另一方面,植物对UV-B射反应的敏感性在种间和品种间存在差异,主要受植物基因型,生态型和生活型的控制。本项目分别以粗枝云杉和青杨组杨树为模式植物,从形态和生理生化方面分别研究了来自不同水分背景下的粗枝云杉种群和来自不同UV-B景下的青杨种群在增强UV-B的反应及其反应差异,并探讨了干旱、喷施外源脱落酸(ABA)对它们抗UV-B力的影响。研究成果可为生态系统的恢复与重建提供理论依据和科学指导。主要研究结果如下: 1. 粗枝云杉的两个种群,湿润种群(来自四川黑水)和干旱种群(来自甘肃迭部)在水分良好和干旱状况下表现出对增强UV-B不同响应。同时,干旱对粗枝云杉抗UV-B力的影响也得到研究:两种胁迫共同作用时,干旱表现出在一定程度上减弱了增强UV-B粗枝云杉的生理特性的影响。 干旱胁迫显著降低了两个粗枝云杉种群的光合同化速率(A), 气孔导度(gs)和PSII的有效光量子产量(Y), 同时,提高了非光化学猝灭效率(qN)和超氧化物歧化酶(SOD)的活性。与湿润种群相比,干旱种群抗旱性更强,表现为干旱种群拥有更高的SOD和干旱进一步加剧了UV-B胁迫效应。 本研究中,干旱胁迫单独作用时,显著降低了青杨两个种群的生物量积累和气体交换,具体包括A、gs、蒸腾速率(E)和光合氮利用效率(PNUE),提高了两个种群的瞬时水分利用效率(WUEi)、长期水分利用效率(WUET)、碳同位素组分(δ13C)和氮含量(N)。同时,UV吸收物质和ABA含量也得到积累。另一方面,增强UV-B青杨两个种群各个指标的影响,同干旱所引起的效应有着相似的趋势。同低海拔种群相比,高海拔种群有着更强的抗旱和抗UV-B力,具体表现在高海拔种群有着更多的生物量积累,更强的气体交换和水分利用效率及更高水平的ABA和UV吸收物质含量。相比干旱诱导的生物量积累和气体交换的降低,在干旱和增强UV-B个胁迫同时作用于青杨时,这种降低表现的更为明显。显著的干旱和UV-B交互作用还表现在WUEi, WUET, δ13C, 可溶性蛋白含量, UV吸收物质含量, ABA, 叶片和茎中的N含量以及C/N比中。 3. 经过一个生长季的试验观察,增强UV-B外源ABA及两因子共同作用对青杨的生物量积累、气体交换、内源ABA和UV吸收物质含量、抗氧化系统以及碳、氮含量和碳/氮比均产生显著影响。本试验中,青杨的两个种群分别来自中国西南部的不同海拔地区,高海拔种群来自青海大通而低海拔种群来自四川九寨。外源ABA的胁迫为直接喷施ABA到青杨叶片,而增强UV-B迫是利用平方波系统分别保证青杨苗暴露于外界UV-B度和两倍于外界UV-B度下。 研究结果显示,增强UV-B著的降低了两个青杨种群的株高、基茎、总叶面积和总生物量等生长指标,同时也导致其A、gs、E和叶片中碳含量的减少。而显著增加了SOD和过氧化物酶(GPx)活性水平,诱导了过氧化氢(H2O2)和MDA的显著增加,促进了UV吸收物质和不同器官中内源ABA含量的显著积累。另一方面,外源ABA引起了青杨光合同化速率的下降,SOD和GPx酶活性的增强,H2O2 和 MDA含量也表现出显著增加,同时,内源ABA含量得到显著累积。同低海拔种群相比,高海拔种群具有更加抗UV-B外源ABA的特性。显著的UV-BABA的交互作用表现在A, E, SOD和GPx活性,以及叶片和根部的内源ABA等一系列指标中。在所有胁迫下,叶片中的碳和氮含量同其在茎和根中的含量显著相关,另外,叶片和茎中的氮含量同茎中的碳含量显著相关。 Sunlight is an indispensable environment factor for plants survival and development. Meanwhile, photosynthetic organisms need sunlight and are thus, inevitably, exposed to UV radiation. Especially for recent years, ultraviolet radiation, especially UV-B reaching the Earth’s surface increased because of depletion of ozone layer resulted from emission of NxO and CFC’s from human activities. On the other hand, the sensitivity of plants to UV-B radiation depends on the species, developmental stage and experimental conditions. In this experiment, two populations of Picea asperata Mast from different water background and two populations of Populus cathayana Rehder from different altitude background were selected as model plants to assess the effects of enhanced UV-B radiation. Morphological and physiological traits induced by enhanced UV-B in each plant species were observed and the different responses were discussed, furthermore the influences of drought and exogenous ABA on responses induced by enhanced UV-B were studied. The study could provide a strong theoretical evidence and scientific direction for the afforestation and rehabilitation of ecosystem. The results are as follows: 1. Different responses of two contrasting Picea asperata Mast. populations to enhanced ultraviolet-B (UV-B) radiation under well-watered and drought conditions were investigated. And the effects of enhanced UV-B on tolerance of drought were also observed in our study that the UV-B exposure may have alleviated some of the damage induced by drought. Two contrasting populations, originating from a wet and dry climate region in China, respectively, were employed in our study. Drought significantly decreased CO2 assimilation rate (A), stomatal conductance (gs) and effective PSII quantum yield (Y), while it significantly increased non-photochemical quenching (qN) and the activity of superoxide dismutase (SOD) in both populations. Compared with the wet climate population, the dry climate population was more acclimated to drought stress and showed much higher activities of SOD and ascorbate peroxidase (APX), and much lower levels of malondialdehyde (MDA) and electrolyte leakage. On the other hand, enhanced UV-B radiation also induced a significant decrease in the chlorophyll (Chl) content in both populations under well-watered conditions, and a significant increase in UV-absorbing compounds in the wet climate population. After one growing season of exposure to different UV-B levels and watering regimes, the increases in MDA and electrolyte leakage, as induced by drought, were less pronounced under the combination of UV-B and drought. In addition, an additive effect of drought and UV-B on A and gs was observed in the wet climate population, and on the activity of APX and qN in the dry climate population. 2. The significant effects of drought, enhanced UV-B radiation and their combination on Populus cathayana Rehd. growth and physiological traits were investigated in two populations, originating from high and low altitudes in south-west China. Our results showed that UV-B acts as an important signal allowing P. cathayana seedlings to respond to drought and that the combination of drought and UV-B may cause synergistically detrimental effects on plant growth in both populations. In both populations, drought significantly decreased biomass accumulation and gas exchange parameters, including A, gs, E and photosynthetic nitrogen use efficiency (PNUE). However, instantaneous water use efficiency (WUEi), transpiration efficiency (WUET), carbon isotope composition (δ13C) and nitrogen (N) content, as well as the accumulation of soluble protein, UV-absorbing compounds and abscisic acid (ABA) were significantly increased by drought. On the other hand, cuttings from both populations, when kept under enhanced UV-B radiation conditions, showed very similar changes in all above-mentioned parameters, as induced by drought. Compared with the low altitude population, the high altitude population was more tolerant to drought and enhanced UV-B, as indicated by the higher level of biomass accumulation, gas exchange, water-use efficiency, ABA concentration and UV-absorbing compounds. After one growing season of exposure to different UV-B levels and watering regimes, the decrease in biomass accumulation and gas exchange, induced by drought, was more pronounced under the combination of UV-B and drought. Significant interactions between drought and UV-B were observed in WUEi, WUET, δ13C, soluble protein, UV-absorbing compounds, ABA and in the leaf and stem N, as well as in the leaf and stem C/N ratio. 3. During one growing season, significant effects induced by enhanced UV-B radiation, exogenous ABA and their combination on biomass accumulation, gas exchange, endogenous ABA and UV-absorbing compounds concentrations, antioxidant system as well as carbon (C) content, nitrogen (N) content and C/N ratio were investigated in two contrasting Populus cathayana populations, originating from high and low altitudes in south-west China. Exogenous ABA was sprayed to the leaves and enhanced UV-B treatment was using a square-wave system to make the seedlings under ambient (1×) or twice ambient (2×) doses of biologically effective UV-B radiation (UV-BBE). Enhanced UV-B radiation significantly decreased height, basal diameter, total leaf area, total biomass, A, gs, E and carbon (C) content in leaves, and significantly increased activities of SOD and guaiacol peroxidase (GPx), hydrogen peroxide (H2O2) and malonaldehyde (MDA) content as well as the accumulation of UV-absorbing compounds and endogenous ABA concentrations among different organs in both populations. In contrast, exogenous ABA showed significant decrease in A and significant increases in activities of SOD and GPx, H2O2, MDA content and the endogenous ABA concentrations. Compared with the low altitude population, the high altitude population was more tolerant to enhanced UV-B and exogenous ABA. Significant interactions between UV-B and ABA were observed in A, E, activities of SOD and GPx, as well as in endogenous ABA in leaves and roots of both populations. Across all treatments, C and N content in leaves was strongly correlated with those were in stems and roots, respectively. Additionally, leaf and stem N content were significant correlated with stem C content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

高等植物种子胚乳贮藏蛋白是种子发芽时的主要氮源,也是人类和动物食用植物蛋白的主要来源。大麦种子胚乳贮藏蛋白主要是醇溶蛋白(hordeins),占大麦胚乳总蛋白的50–60%。根据大麦醇溶蛋白的大小和组成特点,大麦醇溶蛋白被划分为三种类型:富硫蛋白亚类(Bγ-hordeins)、贫硫蛋白亚类(C-hordeins)以及高分子量蛋白亚类(D-hordeins)。B和C组醇溶蛋白是大麦胚乳的两类主要贮藏蛋白,它们分别占大麦总醇溶蛋白成分的70–80%和10–12%。遗传分析表明,大麦BC、D和γ-组醇溶蛋白分别是由位于大麦第五染色体1H(5)上的Hor2、Hor1、Hor3和Hor5位点编码。Hor2位点编码大量分子量相同但组成不同的B醇溶蛋白(B-hordein)。B-hordein的种类、数量和分布是影响大麦酿造、食用及饲养品质的重要因素之一。为深入了解B-hordein基因家族的结构和染色体组织,探明Hor2位点基因表达的发育调控机制,最终达到改良禾谷类作物籽粒品质的目的,本研究以青藏高原青稞为材料,采用同源克隆法,分别克隆B-hordein基因和启动子,通过原核生物表达验证B-hordein基因功能,并利用实时定量PCR探索B-hordein基因表达时空关系,取得如下研究结果: 1. 以具有特殊B醇溶蛋白亚基组成的9份青藏高原青稞为材料,根据GenBank中三个B-hordein基因序列(GenBank No. X03103, X53690和X53691)设计一对引物,通过PCR扩增,获得23个B-hordein基因克隆并对其进行了序列分析。核苷酸序列分析表明,所有克隆均包含完整的开放阅读框。有11个克隆都存在一个框内终止密码子,推测这11个克隆可能是假基因。推测的氨基酸序列分析表明,所有大麦B-hordein具有相似的蛋白质基本结构,均包括一个高度保守的信号肽、中间重复区以及C-端结构域。不同大麦种重复区内重复基元的数目有较大差异。青稞材料Z07–2和Z26的B-hordeins仅具有12个重复基元结构,更接近于野生大麦。这些重复基元数目的差异导致了重复区序列长度和结构的变异。这种现象极可能是由于醇溶谷蛋白基因在进化过程中染色体的不平衡交换或复制滑动所造成的。对所克隆基因和禾本科代表性醇溶谷蛋白基因进行聚类分析,结果表明所有来自栽培大麦的B-hordeins聚类成一个亚家族,来自野生大麦的B-hordeins以及普通小麦的LMW-GS聚类成另外一个亚家族,表明这两个亚家族的成员存在显著差异。此外,我们发现B-hordein基因推测的C-末端序列具有一些有规律的特征:即具有相同C-末端序列的B-hordein基因在系统发生树中聚类为同一个亚组(除BXQ053,BZ09-1,BZ26-5分别单独聚为一类外)。这个特征将有助于我们对所有B醇溶蛋白基因家族成员进行分类,避免了在SDS-PAGE电泳图谱上仅依靠大小分类的局限性。 2. 根据上述克隆的青稞B-hordein基因的5’端序列设计三条基因特异的反向引物,以青稞Z09和Z26的基因组DNA为模板,采用SON-PCR和TAIL-PCR技术分离克隆出8个B-hordein基因的上游调控序列(命名为Z09P和Z26P)。序列分析表明,推测的TATA box位于–80 bp,CAAT–like box位于–140 bp处。此外,Z09P和Z26P中有六个序列在–300 bp处均存在一个由高度保守的EM基序和类GCN4基序构成的胚乳盒(Endosperm Box,EB),在约–560 bp处存在一个胚乳盒类似结构。而Z09P-2和Z26P-3不存在保守的胚乳盒或其类似结构,预示着这两个启动子所调控的基因表达可能受不同类型反式作用因子的调节,推测该启动子对基因的表达调控具有多样性。 3. 将B-hordein基因的开放阅读框定向克隆到表达载体pET-30a中,将其导入大肠杆菌表达菌株BL21中进行外源基因的诱导表达以验证所克隆基因的功能。结果表明仅含重组子pET-BZ07-2和pET-BZ26-5的BL21细菌有目的表达蛋白产生。在诱导3 h时的蛋白表达量最高;3 mM IPTG诱导的蛋白表达量要高于1 mM IPTG诱导的表达量。这为分离纯化B-hordein蛋白以及进一步研究其对大麦籽粒品质的影响奠定基础。 4. 根据从青稞Z09和Z26中分离克隆的B-hordein基因序列设计一对基因特异的引物,同时,选择大麦α-微管蛋白基因(GenBank no. U40042)为看家基因并设计特异引物,利用实时荧光定量PCR检测了青稞籽粒4个胚乳发育时间段的B-hordein基因表达,荧光定量结果显示:两份材料中B-hordein基因的表达量均随发育过程的进行而逐渐升高。Z09中B-hordein基因在开花后7天开始转录,而Z26开花4天后就有低水平B-hordein的表达,这表明Z26中B-hordein基因可能比Z09表达的较早或者Z09中B-hordein基因表达水平较低以致于不能被检测到。此外,在4个不同的胚乳发育时期中,Z26中B-hordein基因的表达量均高于Z09材料。在开花12天到18天的过程中,Z09和Z26中B-hordein基因的表达水平有一个急剧性的升高。这说明在不同胚乳发育时期,Hor2位点的B-hordein等位基因变异体存在mRNA的差异表达。 Seed endosperm storage proteins in higher plants are the main resources of nitrogen for germinating and plant proteins for human and animals. Barley prolamins (also called hordeins) are the major storage proteins in the endosperm and account for 50–60% of total proteins. Hordeins are classically divided into three groups: sulphur-rich (B, γ-hordeins), sulphur-poor (C-hordeins) and high molecular weight (HMW, D-hordeins) hordeins based on the size and composition. B-hordeins and C-hordeins are two major groups and each respectively account for about 70-80% and 10-12% of the total hordein fraction in barley endosperm. Genetic analysis showed that B-, C-, C-, γ-hordeins are encoded by Hor2, Hor1, Hor3 and Hor5 locus on the chromosome 1H (5). Hor2 locus is rich in alleles that encode numerous heterogeneous B-hordein polypeptides. It is reported that B-hordein species, quantity and distribution are significant factors affecting malting, food and feed quality of barley. To understand comprehensively the structure and organization of B-hordein gene family in hull-less barley and explore the developmental control mechanisms of Hor2 locus gene expression and eventually to better exploitation in crop grain quality improvement, we isolated and cloned B-hordein genes and promotors of hull-less barley from Qinghai-Tibet Plateau by PCR, and testified their expression founction in bacteria expression system and explore their spatial and temporal expression pattern by quantitative real time PCR. Our results are as followed, 1. Twenty-three copies of B-hordein gene were cloned from nine hull-less barley cultivars of Qinghai-Tibet Plateau with special B-hordein subunits and molecularly characterized by PCR, based on three B-hordein genes published previously (GenBank No. X03103, X53690 and X53691). DNA sequences analyses confirmed that the six clones all contained a full-length coding region of the barley B-hordein genes. Eleven clones all contain an in-frame stop codon and they are probably pseudogenes. The analysis of deduced amino acid sequences of the genes shows that they have similar structures including signal peptide domain, central repetitive domain, and C-terminal domain. The number of the repeats was largerly variable and resulted in polypeptides in different sizes or structures among the genes. Twelve such repeated motifs were found in Z07–2 and Z26, and they are close to those of the wild barleys, and it is most probably caused by unequal crossing-over and/or slippage during replication as suggested for the evolution of other prolamins. The relatedness of prolamin genes of barley and wheat was assessed in the phylogenetic tree based on their polypeptides comparison. Our phylogenetic analysis suggested that the predicted B-hordeins of cultivated barley formed a subfamily, while the B-hordeins of wild barleys and the two most similar sequences of LMW-GS of T. aestivum formed another subfamily. This result indicated that the members of the two subfamilys have a distinctive difference. In addition, we found the B-hordeins with identical C-terminal end sequences were clustered into a same subgroup (except BXQ053,BZ09-1 and BZ26-5 as a sole group, respectively), so we believe that B-hordein gene subfamilies possibly can be classified on the basis of the conserved C-terminal end sequences of predicted polypeptide and without the limit of SDS-PAGE protein banding patterns. 2. The specific primers were designed according to the published sequences of barley B-hordein genes from Z09 and Z26. Using total DNA isolated from them as the templates, eight clones (designated Z09Pand Z26P) of upstream sequences of the known B-hordein genes was obtained by TAIL-PCR and SON-PCR. Sequences analysis shows that the putative TATA box was present at position –80 bp and CAAT-like box at position –140 bp. Besides, a putative Endosperm Box including an Endosperm Motif (EM) and a GCN4-Like Motif was found at position –300 bp in six clones, and another Endosperm-like box was found at positon –560 bp. While the Endosperm Box or Endosperm-like box was not found in Z09P-2 and Z26P-3. This may indicate that gene expression drived by the two promtors was probably controlled by different trans-acting factors and the genetic control mechanism of corresponding gene expression may be diverse. 3. The B-hordein genic region coding for the mature peptide was cloned into expression vector pET-30a and transformed into bacterial strain BL21 for identifying gene expression fountion. Protein SDS–PAGE analysis showed that only the transformed lysate with the pET-BZ07-2 and pET-BZ26-5 constructs produced proteins related to B-group hordeins of barley, and the mounts of proteins induced by 3 mM IPTG and 3 h were higher than other conditions. This established a base for isolating and putifying B-hordein and further exploring their effects on barley grain quality. 4. The gene-specific primers of B-hordein genes from Z09 and Z26 were used for the quantification of B-hordein gene expression. The α-tubulin gene from Hordeum vulgare subsp. vulgare (GenBank accession number U40042) was used as a control gene. The result shows the transcription of the B-hordein genes in Z09 was found 7 days after flowering, while the transcription of the B-hordein genes in Z26 was found 4 days after flowering, but at a very low level, and it suggested that the B-hordein genes in Z26 probably expressed earlier than those in Z09, or the B-hordein genes in Z09 expressed at so a lower level than Z26 that it can not detected. In addition, B-hordein genes in Z26 accession showed higher expression levels than those in Z09 in four developing stages. Furthermore, a progressive increase in the expression levels of the B-hordein genes between 12 and 18 days after anthesis was observed in both Z09 and Z26. It implies that the B-hordein allelic variants encoded by Hor2 locus exist the differential expression in mRNA levels of during barley endosperm development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Irradiation efect in three carbon allotropes C60, diamond and highly oriented pyrolytic graphite (HOPG) induced by 170 keV B ions, mainly including the process of the damage creation, is investigated by means of Raman spectroscopy technique. The diferences on irradiation sensitivity and structural stability for C60, HOPG and diamond are compared. The analysis results indicate that C60 is the most sensitive for B ions irradiation,diamond is the second one and the structure of HOPG is the most stable under B ion irradiation. The damage cross sections ? of C60, diamond and HOPG deduced from the Raman spectra are 7.78×10−15 , 6.38×10−15 and1.31 × 10−15cm2, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

对豌豆幼苗5天生长期内紫外线-B(UV-B)辐射对豌豆茎伸长生长和一氧化氮(NO)释放率的影响进行了研究.实验结果表明,UV-B射促进了豌豆茎中的NO释放,同时抑制豌豆茎伸长生长;外源NO供体根际处理豌豆幼苗,与UV-B射的上述效应相似;而用NO清除剂(PTIO)处理豌豆幼苗会产生和UV-B射相反的效应,即增加了茎的伸长.由此可推测,NO也许作为信号参与调节UV-B射诱导的生长抑制.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

实验利用束流衰减法测量了43.7AMeV丰中子核17BC靶反应的总截面σR=(1724±93)mb.用零程Glauber计算,假定17B有核芯15B两个价中子结构,输入GG和GO密度分布,计算的激发函数曲线与该实验数据很好符合,输入描述稳定核双参数Fermi密度分布,不能得到与实验数据符合的结果,表明17B核芯15B+2n的假定是合理的.并且中子密度分布表现较大空间扩展-晕结构特征.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

在兰州重离子加速器国家实验室(HIRFL)放射性次级束流线(RIBLL)上,用束流透射法测量了丰中子奇异核17BC靶反应的总截面.假定17B有15B(核芯)+2n结构,采用Gauss+HO形式的密度分布和零力程Glauber模型进行计算的结果可以很好地拟合实验数据,并得出17B密度分布有一个很大的弥散,表明17B双中子晕核.