993 resultados para Antifungal Prophylaxis
Resumo:
Guidelines for the management of patients with invasive candidiasis and mucosal candidiasis were prepared by an Expert Panel of the Infectious Diseases Society of America. These updated guidelines replace the previous guidelines published in the 15 January 2004 issue of Clinical Infectious Diseases and are intended for use by health care providers who care for patients who either have or are at risk of these infections. Since 2004, several new antifungal agents have become available, and several new studies have been published relating to the treatment of candidemia, other forms of invasive candidiasis, and mucosal disease, including oropharyngeal and esophageal candidiasis. There are also recent prospective data on the prevention of invasive candidiasis in high-risk neonates and adults and on the empiric treatment of suspected invasive candidiasis in adults. This new information is incorporated into this revised document.
Resumo:
ABSTRACT :Azole antifungal drugs possess fungistatic activity in Candida albicans making this human pathogen tolerant to these agents. The conversion of azoles into fungicidal agents is of interest since their fungistatic properties increase the ability of C. albicans to develop drug resistance. In C. albicans, the phosphatase calcineurin (calcineurin) is essential for antifungal drug tolerance. Up to now, the only known target of calcineurin is Crzl, which is a transcription factor (TF) involved in responses to ionic stress. Thus, most of the components of the calcineurin signaling remain to be identified in C. albicans.In this work, the calcineurin pathway was investigated in order to i) characterize the role of calcineurin in the biology of C. albicans, ii) identify putative targets of calcineurin and iii) characterize the phenomenon of tolerance to antifungal drugs. Towards these aims, four different approaches were used.First, using C. albicans microarrays, an attempt was made to identify a set of calcineurindependent genes (CDGs). Since CDGs were highly dependent upon the external stimulus used to activate calcineurin (Ca2+ or terbinafine), this stimulus bias was bypassed by the construction of strains expressing a truncated autoactive form of calcineurin (Cmp1tr) in a doxycyclinedependent manner. The characterization of Cmpltr was undertaken and results showed that it mimicked awild-type activated calcineurin for all tested phenotypes (i.e. Cnbl-dependence, inhibition by FK506, phosphatase 2B activity, ability to dephosphorylate Crzl and to regulate Crz1-and calcineurin-dependent genes, role in antifungal drug tolerance and susceptibility, role in colony formation on Spider agar). Cmp1tr was therefore considered as a valid tool to study the calcineurin signaling pathway. In silico analysis of CDGs allowed the identification of i) a significant overlap between CDGs and genes regulated by the Cyrl signalíng pathway, ii) putative interactions between calcineurin activation and cell wall reorganization and phospholipid transport, iii) a putative interactión between calcineurin and the regulation of translation and iv) a putative relation between calcineurin and proteasome regulation. Further in silico analyses of the promoters of Crz1-independent CDGs were performed to identify TFs (other than Crz1) that were likely to regulate CDGs and therefore to be a direct target of calcineurin. The analyses revealed that Rpn4 and Mnl1 were TFs likely to be regulated by calcineurin.Second, in order to better characterize azole tolerance, an attempt was made to i) confirm the role of Hsp90 in fluconazole tolerance with a doxycycline-dependent Hsp90 expression system and ii) assess its calcineurin-dependence. Hsp90 was found to be significantly involved in fluconazole tolerance. However, results were not in agreement with the hypothesis that Hsp90 mediates fluconazole tolerance by the only downstream effector calcineurin. Rather Hsp90 is interacting with numerous components for fluconazole tolerance.Third, a collection of C. albicans TFs mutants were screened for loss of tolerance to terbinafine and fluconazole in order to identify TFs involved in antifungal drug tolerance. Out of the 265 TFs mutants screened, only the upc2Δ/Δ mutant showed a loss of fluconazole and terbinafine tolerance. Interestingly, no relation between Upc2 and calcineurin activity was found. These results suggested that the tolerance to antifungal drugs must not be only considered as a calcineurin-dependent phenomenon in C. albicans.Fourth, using FRCS analyses, an attempt was made to identify putative signs of programmed cell death (PCD) in calcineurin mutant cells upon loss of tolerance to terbinafine. A high proportion of cells died from both RO5-dependent (which is a sign of PCD) and ROS-independent (which is a sign of loss of homeostasis) processes in the calcineurin mutant. While these results suggest that calcineurin represses both loss of homeostasis and PCD, the role of calcineurin in PCD is still an open question.In conclusion, this work allowed i) the identification of several putative calcineurin targets, ii) the discovery of several links between calcineurin and signaling pathways and important biological processes and iii) the identification of novel components of calcineurin-independent mechanisms that participate in tolerance to antifungal drugs in C. albicans.RÉSUME :Les azoles sont des antifongiques qui présentent une activité fongistatique contre Candida albicans et rendent cette levure tolérante à ces agents. La conversion des azoles en agents fongicides est d'intérêts car leurs propriétés fongistatiques favorisent le développement de résistance aux drogues chez C. albicans. La calcineurine (calcineurin) est une phosphatase essentielle pour la tolérance aux antifongiques chez C. albicans. La seule cible connue de la calcineurin est Crz1, un facteur de transcription (FT) impliqué dans la réponse aux stress ionique. Ainsi, la plupart des constituants de la voie de signalisation de la calcineurin restent encore à être identifiés chez C. albicans.Dans ce travail de thèse, la voie de signalisation de la calcineurin a été étudiée de sorte à i) caractériser le rôle de la calcineurin dans la biologie de C. albicans, ii) identifier de nouvelles cibles de la calcineurin et iii) caractériser le phénomène de tolérance aux antifongiques. A ce propos, quatre approches ont été entreprises.Premièrement, des puces à ADN de C. albicans ont été utilisées afin d'identifier les gènes dépendants de la calcineurin (GDCs). Les GDCs étant étroitement dépendants du stimulus utilisé pour activer la calcineurin, le biais «stimulus» a été évité via la construction d'une souche exprimant une forme tronquée et autoactive de la calcineurin (Cmp1tr), en présence de doxycycline. La caractérisation de Cmp1tr a été entreprise et les résultats ont montré qu'elle mimait une calcineurin sauvage et activée pour la plupart des phénotypes testés (i.e. dépendance à Cnb1, inhibition par le FK506, activité phosphatase 2B, déphosphorylation de Crz1 et régulation de gènes dépendant de la calcineurin, rôle dans la tolérance et la susceptibilité aux antifongiques, rôle dans la formation des colonies sur milieu Spider). Cmp1tr a donc été considéré comme un outil pertinent pour l'étude de la voie de signalisation de la calcineurin. Les analyses in silico des GDCs ont permis l'identification i) d'un chevauchement entre les GDCs èt les gènes régulés par la voie de signalisation de Cyrl, ii) d'une interaction entre la calcineurin et la réorganisation de la paroi cellulaire ainsi que le transport des phospholipides, iii) d'une interaction entre calcineurin et la régulation de la traduction et iv) une relation entre la calcineurin et la régulation du protéasome. De plus, une analyse in silico des promoteurs des GDCs avec une régulation indépendante de Crz1 a permis d'identifier deux FTs qui pourraient être des cibles directes de la calcineurin, Rpn4 et Mnll.Deuxièmement, afin de caractériser la tolérance aux azoles, il a été entrepris i) de confirmer le rôle de Hsp90 dans la tolérance au fluconazole en utilisant un système d'expression dépendant de la doxycycline et ii) de caractériser sa dépendance à la calcineurin. Hsp90 a été montré impliqué dans la tolérance aux azoles. Cependant, les résultats n'ont pas corroboré une hypothèse expliquant le rôle d'Hsp90 dans la tolérance aux antifongiques par son unique. interaction avec la calcineurin. Il a été proposé que le rôle d'Hsp90 dans la tolérance aux antifongiques soit dû à ces multiples interactions avec le protéome de C. albicans plutôt que par son interaction avec un partenaire unique.Troisièmement, une collection de mutant pour des FTs de C. albicans a été criblée pour une perte de tolérance au fluconazole ou à la terbinafine, de sorte à identifier les FTs impliqués dans la tolérance aux antifongiques. Sur les 265 FTs passés au crible, seul le mutant upc2Δ/Δ a montré une perte de tolérance au fluconazole et à la terbinafine. Aucune relation n'a été trouvée entre la calcineurin et l'activité d'Upc2. Ces résultats suggèrent que la perte de tolérance aux antifongiques ne doit pas être considérée comme un phénomène exclusivement lié à la voie de signalisation de la calcineurin.Quatrièmement, en utilisant la cytométrie de flux, la présence de signes de mort cellulaire programmée (MCP) a été recherchée lors de la perte de tolérance du mutant calcineurin incubé avec de la terbinafine. Une grande proportion de cellules mortes incluant ou non une production de ROS (un signe de MCP) a été détectée dans le mutant calcineurin. Ces résultats préliminaires suggèrent que la calcineurin réprime autant la perte d'homéostasie qu'elle régule l'entrée en MCP. Cependant d'autres analyses sont nécessaires pour démontrer clairement le rôle de la calcineurin dans la régulation de la MCP.En conclusion, ce travail de thèse a permis i) l'identification de plusieurs cibles possibles de la calcineurine, ii) la découverte de plusieurs interactions entre la calcineurine et d'autres voies de signalisation et processus biologiques importants et iii) de démontrer la présence de voies indépendantes de la calcineurine impliquées dans la tolérance aux antifongiques chez C. albicans.
Resumo:
Introduction: Boerhaave syndrome (BS) is a spontaneous esophageal perforation, described in aged, alcoholic males, secondary to forceful vomiting. BS has rarely been described in children. Case presentation: The patient is a 7-year-old Nigerian girl. She has a past history of clinical gastro-esophageal reflux (treated conservatively with prokinetics and good evolution), malaria at the age of 3 months and an episode of acute pancreatitis at 5 years. One week prior admission, she had stopped atovaquone-proguanil (AP) prophylaxis after a trip in an endemic area. Two days prior admission, she presented several bouts of isolated acute vomiting, without fever or diarrhea. On admission, she complained of chest pain. Cardiac auscultation revealed crepitus. No subcutaneous emphysema nor respiratory distress was present. Chest radiography and CT-scan confirmed a pneumomediastinum extending to the neck. Esophageal perforation was suspected. An upper gastrointestinal endoscopy was performed and showed a small esophageal tear, grade II-III esophagitis and a single gastric ulcer without any sign of H. Pylori infection. Enteral feeds were stopped and a nasogastric sucking tube inserted. The patient made a full recovery on intravenous antibiotics and conservative treatment. Of note a second episode of subclinical acute pancreatitis, treated conservatively, probably drug-induced. Discussion: BS is a complete rupture of all layers of the esophagus, secondary to an increased intra-abdominal pressure due to incomplete opening of the cricophayngeal sphincter occurring during vomiting or cough. Rarer causes include eosinophilic or Barrett's esophagitis, HIV and caustic ingestion. Esophageal perforation in children is rare, most of time secondary to necrotizing esophagitis in the newborn, medical intervention (endoscopy, sucking, or intubation) or trauma in the older child. Our patient had none of those risk factors and it is still unclear what predisposed her to this complication. However, we believe that preceding forceful vomiting with increased abdominal pressure acting on a weakened oesophagus due to esophagitis might be responsible. We could not find any association in the literature between AP and BS nor between BS and acute pancreatitis. The origin of her recurrent pancreatitis remains unclear, reason for which genetic testing for mutations in the trypsinogen, trypsin inhibitor and CFTR genes will be performed in case of a third episode.
Resumo:
In the 1950s, the strategy of adding chloroquine to food salt as a prophylaxis against malaria was considered to be a successful tool. However, with the development of Plasmodium resistance in the Brazilian Amazon, this control strategy was abandoned. More than 50 years later, asexual stage resistance can be avoided by screening for antimalarial drugs that have a selective action against gametocytes, thus old prophylactic measures can be revisited. The efficacy of the old methods should be tested as complementary tools for the elimination of malaria.
Resumo:
INTRODUCTION: Rivaroxaban (RXA) is licensed for prophylaxis of venous thromboembolism after major orthopaedic surgery of the lower limbs. Currently, no test to quantify RXA in plasma has been validated in an inter-laboratory setting. Our study had three aims: to assess i) the feasibility of RXA quantification with a commercial anti-FXa assay, ii) its accuracy and precision in an inter-laboratory setting, and iii) the influence of 10mg of RXA on routine coagulation tests. METHODS: The same chromogenic anti-FXa assay (Hyphen BioMed) was used in all participating laboratories. RXA calibrators and sets of blinded probes (aim ii.) were prepared in vitro by spiking normal plasma. The precise RXA content was assessed by high-pressure liquid chromatography-tandem mass spectrometry. For ex-vivo studies (aim iii), plasma samples from 20 healthy volunteers taken before and 2 - 3hours after ingestion of 10mg of RXA were analyzed by participating laboratories. RESULTS: RXA can be assayed chromogenically. Among the participating laboratories, the mean accuracy and the mean coefficient of variation for precision of RXA quantification were 7.0% and 8.8%, respectively. Mean RXA concentration was 114±43μg/L .RXA significantly altered prothrombin time, activated partial thromboplastin time, factor analysis for intrinsic and extrinsic factors. Determinations of thrombin time, fibrinogen, FXIII and D-Dimer levels were not affected. CONCLUSIONS: RXA plasma levels can be quantified accurately and precisely by a chromogenic anti-FXa assay on different coagulometers in different laboratories. Ingestion of 10mg RXA results in significant alterations of both PT- and aPTT-based coagulation assays.
Resumo:
Jasmonates in plants are cyclic fatty acid-derived regulators structurally similar to prostaglandins in metazoans. These chemicals mediate many of plants' transcriptional responses to wounding and pathogenesis by acting as potent regulators for the expression of numerous frontline immune response genes, including those for defensins and antifungal proteins. Additionally, the pathway is critical for fertility. Ongoing genetic screens and protein-protein interaction assays are identifying components of the canonical jasmonate signaling pathway. A massive molecular machine, based on two multiprotein complexes, SCF(COI1) and the COP9 signalosome (CNS), plays a central role in jasmonate signaling. This machine functions in vivo as a ubiquitin ligase complex, probably targeting regulatory proteins, some of which are expected to be transcriptional repressors. Some defense-related mediators, notably salicylic acid, antagonize jasmonates in controlling the expression of many genes. In Arabidopsis, NONEXPRESSOR OF PR GENES (NPR1) mediates part of this interaction, with another layer of control provided further downstream by the mitogen-activated protein kinase (MAPK) homolog MPK4. Numerous other interpathway connections influence the jasmonate pathway. Insights from Arabidopsis have shown that an allele of the auxin signaling gene AXR1, for example, reduces the sensitivity of plants to jasmonate. APETALA2 (AP2)-domain transcription factors, such as ETHYLENE RESPONSE FACTOR 1 (ERF1), link the jasmonate pathway to the ethylene signaling pathway. As progress in characterizing several new mutants (some of which are hypersensitive to jasmonic acid) augments our understanding of jasmonate signaling, the Connections Map will be updated to include this new information.
Resumo:
This study examined whether the antidermatophytic activity of essential oils (EOs) can be used as an indicator for the discovery of active natural products against Leishmania amazonensis. The aerial parts of seven plants were hydrodistilled. Using broth microdilution techniques, the obtained EOs were tested against three strains of dermatophytes (Trichophyton mentagrophytes, Microsporum gypseum and Microsporum canis). To compare the EOs antifungal and antiparasitic effects, the EOs activities against axenic amastigotes of L. amazonensis were concurrently evaluated. For the most promising EOs, their antileishmanial activities against parasites infecting peritoneal macrophages of BALB/c mice were measured. The most interesting antifungal candidates were the EOs from Cymbopogon citratus, Otacanthus azureus and Protium heptaphyllum, whereas O. azureus, Piper hispidum and P. heptaphyllum EOs exhibited the lowest 50% inhibitory concentration (IC50) values against axenic amastigotes, thus revealing a certain correspondence between both activities. The P. hispidum EO was identified as the most promising product in the results from the infected macrophages model (IC50: 4.7 µg/mL, safety index: 8). The most abundant compounds found in this EO were sesquiterpenes, notably curzerene and furanodiene. Eventually, the evaluation of the antidermatophytic activity of EOs appears to be an efficient method for identifying new potential drugs for the treatment of L. amazonensis.
Resumo:
Despite recent advances in the treatment of some forms of leishmaniasis, the available drugs are still far from ideal due to inefficacy, parasite resistance, toxicity and cost. The wide-spectrum antimicrobial activity of 2-nitrovinylfuran compounds has been described, as has their activity against Trichomonas vaginalis and other protozoa. Thus, the aim of this study was to test the antileishmanial activities of six 2-nitrovinylfurans in vitro and in a murine model of leishmaniasis. Minimum parasiticide concentration (MPC) and 50% inhibitory concentration (IC50) values for these compounds against the promastigotes of Leishmania amazonensis, Leishmania infantum and Leishmania braziliensis were determined, as were the efficacies of two selected compounds in an experimental model of cutaneous leishmaniasis (CL) caused by L. amazonensis in BALB/c mice. All of the compounds were active against the promastigotes of the three Leishmania species tested. IC50 and MPC values were in the ranges of 0.8-4.7 µM and 1.7-32 µM, respectively. The compounds 2-bromo-5-(2-bromo-2-nitrovinyl)-furan (furvina) and 2-bromo-5-(2-methyl-2-nitrovinyl)-furan (UC245) also reduced lesion growth in vivo at a magnitude comparable to or higher than that achieved by amphotericin B treatment. The results demonstrate the potential of this class of compounds as antileishmanial agents and support the clinical testing of Dermofural(r) (a furvina-containing antifungal ointment) for the treatment of CL.
Resumo:
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare subtype of leukemia/lymphoma, whose diagnosis can be difficult to achieve due to its clinical and biological heterogeneity, as well as its overlapping features with other hematologic malignancies. In this study we investigated whether the association between the maturational stage of tumor cells and the clinico-biological and prognostic features of the disease, based on the analysis of 46 BPDCN cases classified into three maturation-associated subgroups on immunophenotypic grounds. Our results show that blasts from cases with an immature plasmacytoid dendritic cell (pDC) phenotype exhibit an uncommon CD56- phenotype, coexisting with CD34+ non-pDC tumor cells, typically in the absence of extramedullary (e.g. skin) disease at presentation. Conversely, patients with a more mature blast cell phenotype more frequently displayed skin/extramedullary involvement and spread into secondary lymphoid tissues. Despite the dismal outcome, acute lymphoblastic leukemia-type therapy (with central nervous system prophylaxis) and/or allogeneic stem cell transplantation appeared to be the only effective therapies. Overall, our findings indicate that the maturational profile of pDC blasts in BPDCN is highly heterogeneous and translates into a wide clinical spectrum -from acute leukemia to mature lymphoma-like behavior-, which may also lead to variable diagnosis and treatment.
Resumo:
PURPOSE OF REVIEW: Invasive fungal infections remain a serious complication for critically ill ICU patients. The aim of this article is to review recent efficacy data of newer antifungal agents for the treatment of invasive candidiasis. The influence that recent epidemiological trends, advances in diagnostic testing, and risk prediction methods exert on the optimization of antifungal therapy for critically ill ICU patients will also be reviewed. RECENT FINDINGS: Recent clinical trials have documented the clinical efficacy of the echinocandins and the newer triazoles for the management of invasive candidiasis. Thus far, resistance to echinocandins remains rare. Changes in the epidemiology of Candida spp. causing invasive candidiasis, such as an increasing relative proportion of non-albicans Candida spp., have not been universally reported, although they have important implications for the use of fluconazole as first-line therapy for invasive candidiasis. Efforts to improve the timeliness and accuracy of laboratory diagnostic techniques and clinical prediction models to allow early and accurately targeted antifungal intervention strategies continue. SUMMARY: Echinocandins, given their clinical efficacy, spectrum of activity, and favourable pharmacological properties, are likely to replace fluconazole as initial antifungal agents of choice among critically ill ICU patients. The optimization of patient outcomes will require more accurately targeted early antifungal intervention strategies based upon sensitive and specific biological and clinical markers of risk.
Resumo:
Currently, it is accepted that there are three species that were formerly grouped under Candida parapsilosis: C. para- psilosis sensu stricto, Candida orthopsilosis, andCandida metapsilosis. In fact, the antifungal susceptibility profiles and distinct virulence attributes demonstrate the differences in these nosocomial pathogens. An accurate, fast, and economical identification of fungal species has been the main goal in mycology. In the present study, we searched sequences that were available in the GenBank database in order to identify the complete sequence for the internal transcribed spacer (ITS)1-5.8S-ITS2 region, which is comprised of the forward and reverse primers ITS1 and ITS4. Subsequently, an in silico polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was performed to differentiate the C. parapsilosis complex species. Ninety-eight clinical isolates from patients with fungaemia were submitted for analysis, where 59 isolates were identified as C. parapsilosis sensu stricto, 37 were identified as C. orthopsilosis, and two were identified as C. metapsilosis. PCR-RFLP quickly and accurately identified C. parapsilosis complex species, making this method an alternative and routine identification system for use in clinical mycology laboratories.
Resumo:
Manuel O, Pascual M, Perrottet N, Lamoth F, Venetz J-P, Decosterd LA, Buclin T, Meylan PR. Ganciclovir exposure under a 450 mg daily dosage of valganciclovir for cytomegalovirus prevention in kidney transplantation: a prospective study. Clin Transplant 2010: 24: 794-800. Abstract: This prospective study aimed at determining the ganciclovir exposure observed under a daily dosage of 450 mg valganciclovir routinely applied to kidney transplant recipients with a GFR above 25 mL/min at risk for cytomegalovirus (CMV) disease. Ganciclovir levels at trough (C(trough) ) and at peak (C(3 h) ) were measured monthly. Ganciclovir exposure (area under the curve [AUC(0-24) ]) was estimated using Bayesian non-linear mixed-effect modeling (NONMEM). Thirty-six patients received 450 mg of valganciclovir daily for three months. Median ganciclovir C(3 h) was 3.9 mg/L (range: 1.3-7.1), and C(trough) was 0.4 mg/L (range 0.1-2.7). Median AUC(0-24) of ganciclovir was 59.3 mg h/L (39.0-85.3) in patients with GFR(MDRD) 26-39 mL/min, 35.8 mg h/L (24.9-55.8) in patients with GFR(MDRD) 40-59 mL/min, and 29.6 mg h/L (22.0-43.2) in patients with GFR(MDRD) ≥ 60 mL/min. No major differences in adverse events according to ganciclovir exposure were observed. CMV viremia was not detected during prophylaxis. After discontinuing prophylaxis, CMV viremia was seen in 8/36 patients (22%), and 4/36 patients (11%) developed CMV disease. Ganciclovir exposure after administration of valganciclovir 450 mg daily in recipients with GFR ≥60 mL/min was comparable to those previously reported with oral ganciclovir. A routine daily dose of 450 mg valganciclovir appears to be acceptable for CMV prophylaxis in most kidney transplant recipients.
Resumo:
Among biocontrol agents that are able to suppress root diseases caused by fungal pathogens, root-colonizing fluorescent pseudomonads have received particular attention because many strains of these bacteria trigger systemic resistance in host plants and produce antifungal compounds and exoenzymes. In general, the expression of these plant-beneficial traits is regulated by autoinduction mechanisms and may occur on roots when the pseudomonads form microcolonies. Three major classes of antibiotic compounds reviewed here in detail (2,4-diacetylphloroglucinol, pyoluteorin and various phenazine compounds) are all produced under cell population density-dependent autoinduction control acting at transcriptional and post-transcriptional levels. This regulation can either be reinforced or attenuated by a variety of chemical signals emanating from the pseudomonads themselves, other microorganisms or root exudates. Signals stimulating biocontrol factor expression via the Gac/Rsm signal transduction pathway in the biocontrol strain Pseudomonas fluorescens CHA0 are synthesized by many different plant-associated bacteria, warranting a more detailed investigation in the future.
Resumo:
Chronic hepatitis B virus (HBV) infection is responsible for up to 30% of cases of liver cirrhosis and up to 53% of cases of hepatocellular carcinoma. Liver transplantation (LT) is the best therapeutic option for patients with end-stage liver failure caused by HBV. The success of transplantation, though, depends on receiving prophylactic treatment against post-transplant viral reactivation. In the absence of prophylaxis, liver transplantation due to chronic hepatitis B (CHB) is associated with high rates of viral recurrence and poor survival. The introduction of treatment with hepatitis B immunoglobulins (HBIG) during the 1990s and later the incorporation of oral antiviral drugs have improved the prognosis of these patients. Thus, LT for CHB is now a universally accepted option, with an estimated 5 years survival of around 85% vs the 45% survival seen prior to the introduction of HBIG. The combination of lamivudine plus HBIG has for many years been the most widely used prophylactic regimen. However, with the appearance of new more potent oral antiviral agents associated with less resistance (e.g., entecavir and tenofovir) for the treatment of CHB, new prophylactic strategies are being designed, either in combination with HBIG or alone as a monotherapy. These advances have allowed for more personalized prophylaxis based on the individual risk profile of a given patient. In addition, the small pool of donors has required the use of anti-HBc-positive donors (with the resulting possibility of transmitting HBV from these organs), which has been made possible by suitable prophylactic regimens.
Resumo:
Fungal diseases still play a major role in morbidity and mortality in patients with haematological malignancies, including those undergoing haematopoietic stem cell transplantation. Although Aspergillus and other filamentous fungal diseases remain a major concern, Candida infections are still a major cause of mortality. This part of the ESCMID guidelines focuses on this patient population and reviews pertaining to prophylaxis, empirical/pre-emptive and targeted therapy of Candida diseases. Anti-Candida prophylaxis is only recommended for patients receiving allogeneic stem cell transplantation. The authors recognize that the recommendations would have most likely been different if the purpose would have been prevention of all fungal infections (e.g. aspergillosis). In targeted treatment of candidaemia, recommendations for treatment are available for all echinocandins, that is anidulafungin (AI), caspofungin (AI) and micafungin (AI), although a warning for resistance is expressed. Liposomal amphotericin B received a BI recommendation due to higher number of reported adverse events in the trials. Amphotericin B deoxycholate should not be used (DII); and fluconazole was rated CI because of a change in epidemiology in some areas in Europe. Removal of central venous catheters is recommended during candidaemia but if catheter retention is a clinical necessity, treatment with an echinocandin is an option (CII(t) ). In chronic disseminated candidiasis therapy, recommendations are liposomal amphotericin B for 8 weeks (AIII), fluconazole for >3 months or other azoles (BIII). Granulocyte transfusions are only an option in desperate cases of patients with Candida disease and neutropenia (CIII).