985 resultados para Anodic Oxidation
Resumo:
Salicylaldehyde (selectivity = 57.3% at a conversion = 73.8%) was prepared for the first time by the oxidation of o-cresol in a single step using impregnated CuCo/C catalysts.
Resumo:
A dense Ba0.5Sr0.5Co0.8Fe0.2O3-delta membrane tube was prepared by the extruding method. Furthermore, a membrane reactor with this tubular membrane was successfully applied to partial oxidation of methane (POM) reaction, in which the separation of oxygen from air and the partial oxidation of methane are integrated in one process. At 875degreesC, 94% of methane conversion, 98% of CO selectivity, 95% of H-2 selectivity, and as high as 8.8 mL/(min (.) cm(2)) of oxygen flux were obtained. In POM reaction condition. the membrane tube shows a very good stability.
Resumo:
An in-situ modified sol-gel method for the preparation of a Ni-based monolith-supported catalyst is reported. With the presence of a proper amount of plasticizer and binder, and at an optimized pH value, the stable boehmite sol was modified with metal ions (Ni, Li, La) successfully without distinct growth of the particle size. Monolith-supported Ni-based/gamma-Al2O3 catalysts were obtained using the modified sol as the coating medium with several cycles of dip-coating and calcination. Combined BET, SEM-EDS, XRD and H-2-TPR investigations demonstrated that the derived monolith catalysts had a high specific surface area, a relatively homogeneous surface composition, and a high extent of interaction between the active component and the support. These catalysts showed relatively stable catalytic activities for partial oxidation of methane (POM) to syngas under atmospheric pressure. The monolith catalysts prepared by this sol-gel method also demonstrated an improved resistance to sintering and loss of the active component during the reaction process.
Resumo:
A novel and ideal dense catalytic membrane reactor for the reaction of partial oxidation of methane to syngas (POM) was constructed from the stable mixed conducting perovskite material of BaCo0.4Fe0.4Zr0.2O3-delta and the catalyst of LiLaNiO/gamma-Al2O3. The POM reaction was performed successfully. Not only was a short induction period of 2 h obtained, but also a high catalytic performance of 96-98% CH4 conversion, 98-99% CO selectivity and an oxygen permeation flux of 5.4-5.8 ml cm(-2) min(-1) (1.9-2.) mumol m(-2) S-1 Pa-1) at 850 degreesC were achieved. Moreover, the reaction has been steadily carried out for more than 2200 h, and no interaction between the membrane material and the catalyst took place.
Resumo:
Titania sols were prepared by acid hydrolysis of a TiCl4 precursor instead of titanium alkoxides. The effect of acid concentration on the particle size and stability of sol was investigated. Stable titania sols with mean particle size of 14 nm could be obtained when the H+/Ti molar ratio was 0.5. The titania sols were modified with Pt, SiO2, ZrO2, WO3 and MoO3 to prepare a series of modified catalysts, which were used for the photocatalytic oxidation of formaldehyde at 37 degreesC. They showed different photocatalytic activities due to the influence of the additives. Comparing with pure TiO2, the addition of silica or zirconia increased the photocatalytic activity, while the addition of Pt and MoO3 decreased the activity, and the addition Of WO3 had little effect on the activity. It is of great significance that the conversion of formaldehyde was increased up to 94% over the SiO2-TiO2 catalyst. The increased activity was partly due to higher surface area and porosity or smaller crystallite size. A comparison of our catalyst compositions with the literature in this field suggested that the difference in activity due to the addition of a second metal oxide maybe caused by the surface chemistry of the catalysts, particularly the acidity. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
With addition of methanol in acetic acid solvent, m-phenoxytoluene could be oxidized to m-phenoxybenzaldehyde selectively by a cobalt bromide catalyst. Paratemters such as the ratio of Co/Br and the reaction time of m-phenoxytoluene oxidation as well as visible spectra of cobalt bromide in acetic acid/methanol solvents, were also investigated. Addition of methanol caused the oxidation of aldehydes to proceed more slowly than it did solely in acetic acid solvent. The decrease of cobaltous-multibromides in acetic acid/methanol solvents was responsible for the improvement in the selective oxidation of m-phenoxytoluene. (C) 1999 Elsevier Science B.V. All rights reserved.