999 resultados para Alberto Langlade
Resumo:
Objective: MicroRNAs (miRNAs) are small noncoding regulatory RNAs (19-25 nucleotides) that play a major role in regulation of gene expression. They are responsible for the control of fundamental cellular processes that has been reported to be involved in human tumorigenesis. The characterization of miRNA profiles in human tumors is crucial for the understanding of carcinogenesis processes, finding of new tumor markers, and discovering of specific targets for the development of innovative therapies. The aim of this study is to find miRNAs involved in prostate cancer progression comparing the profile of miRNA expressed by localized high grade carcinoma and bone metastasis. Material and methods: Two groups of tumors where submitted to analyses. The first is characterized by 18 patients who underwent radical prostatectomy for treatment of localized high grade prostate carcinoma (PC) with mean Gleason score 8.6, all staged pT3. The second group is composed of 4 patients with metastatic, androgen-independent prostate carcinoma, and 2 PC cell lines. LNCaP derived from a metastatic PC to a lymph node, and another derived from an obstructive, androgen-independent PC (PcBRA1). Expression analysis of 14 miRNAs was carried out using quantitative RT-PCR. Results: miR-let7c, miR-100, and miR-218 were significantly overexpressed by all localized high GS, pT3 PC in comparison with metastatic carcinoma. (35.065 vs. 0.996 P < 0.001), (55.550 vs. 8.314, P = 0.010), and (33.549 vs. 2.748, P = 0.001), respectively. Conclusion: We hypothesize that miR-let7c, miR-100, and miR-218 may be involved in the process of metastasization of PC, and their role as controllers of the expression of RAS, c-myc, Laminin 5 beta 3, THAP2, SMARCA5, and BAZ2A should be matter of additional studies. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Ultrasonometry seems to have a future for the evaluation of fracture healing. Ultrasound propagation velocity (USPV) significantly decreases at the same time that bone diameter decreases as healing takes place, thus approaching normal values. In this investigation, both USPV and broadband ultrasound attenuation (BUA) were measured using a model of a transverse mid-diaphyseal osteotomy of sheep tibiae. Twenty-one sheep were operated and divided into three groups of seven, according to the follow-up period of 30, 60, and 90 days, respectively. The progress of healing of the osteotomy was checked with monthly conventional radiographs. The animals were killed at the end of the period of observation of each group, both operated-upon and intact tibiae being resected and submitted to the measurement of underwater transverse and direct contact transverse and longitudinal USPV and BUA at the osteotomy site. The intact left tibia of the 21 animals was used for control, being examined on a symmetrical diaphyseal segment. USPV increased while BUA decreased with the progression of healing, with significant differences between the operated and untouched tibiae and between the periods of observation, for most of the comparisons. There was a strong negative correlation between USPV and BUA. Both USPV and BUA directly reflect and can help predict the healing of fractures, but USPV alone can be used as a fundamental parameter. Ultrasonometry may be of use in clinical application to humans provided adequate adaptations can be developed. (C) 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 29:444-451, 2011
Resumo:
Increases in muscular cross-sectional area (CSA) occur in quadriplegics after training, but the effects of neuromuscular electrical stimulation (NMES) along with training are unknown. Thus, we addressed two questions: (1) Does NMES during treadmill gait training increase the quadriceps CSA in complete quadriplegics?; and (2) Is treadmill gait training alone enough to observe an increase in CSA? Fifteen quadriplegics were divided into gait (n = 8) and control (n = 7) groups. The gait group performed training with NMES for 6 months twice a week for 20 minutes each time. After 6 months of traditional therapy, the control group received the same gait training protocol but without NMES for an additional 6 months. Axial images of the thigh were acquired at the beginning of the study, at 6 months (for both groups), and at 12 months for the control group to determine the average quadriceps CSA. After 6 months, there was an increase of CSA in the gait group (from 49.8 +/- A 9.4 cm(2) to 57.3 +/- A 10.3 cm(2)), but not in the control group (from 43.6 +/- A 7.6 cm(2) to 41.8 +/- A 8.4 cm(2)). After another 6 months of gait without NMES in the control group, the CSA did not change (from 41.8 +/- A 8.4 cm(2) to 41.7 +/- A 7.9 cm(2)). The increase in quadriceps CSA after gait training in patients with chronic complete quadriplegia appears associated with NMES.
Resumo:
Objective: A new adjustable pinch has been developed for producing a crush injury, with a previously known load of 5 kg, on a 5 mm-long segment of the nerve. Methods: Stainless steel was the material selected for building the pinch due its durability and possibility of sterilization with anti-septic substances, which are often corrosive. The crushing load of the pinch is adjustable by increasing or decreasing the tension of the spring by means of a screw used for calibration, which is performed by a load cell. Result: This pinch has been used in a few experimental investigations and was shown to be as efficient as both the universal testing machine and the dead weight machine, previously used. Conclusion: The developed pinch has the advantages of being portable and user-friendly. In addition, the pinch is cheap and allows for the standardization of the applied load.
Resumo:
Background. A variety of techniques can be used to achieve stabilization of femoral valgus osteotomies in children, but what is lacking is a versatile fixation system that associates stability and versatility at different ages and for different degrees of deformity. Methods. Mechanical tests of three configurations used to fix femoral valgus osteotomies, based oil the tension band wire principle, were carried out. A 30 degrees wedge valgus osteotomy was performed at the subtrochanteric level in 60 swine femurs and fixed with three different systems. In Group 1, two Kirschner wires (K wire) were introduced from the tip of the greater trochanter to the medial cortex, crossing the osteotomy. A flexible steel wire was anchored to the K wires into holes in the lateral cortex and tightened to form a tension band. The same setup was used in Group 2, but two additional smooth K wires were inserted into the lateral surface of the greater trochanter and driven to the femoral head with the distal extremities bent and tied around tile bone shaft. In Group 3, the fixation was similar to that in Group 2, but tile ascending K wires were introduced below the osteotomy level, crossing the osteotonly. Mechanical tests in bending-compression and torsion were used to access the stability. Findings. The torsional relative stiffness was 116% greater for Group 3 (0.27 N m/degree) and no significant difference was found between Group 1 (0.10 N m/degree) and Group 2 (0.12 N m/degree). The average torque was 103% higher for Group 3 (1.86 N m). Stiffness in bending-compression was significantly higher in Group 3 (508 x 10(3) N/m) than in Group 1 (211 x 10(3) N/m) and Group 2 (219 x 10(3) N/m). Interpretation. Fixation as used in Group 3 was significantly more stable, both in torsion and bending-compression tests, than tile other two techniques. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The rat posterodorsal medial amygdala (MePD) is a brain area in which gonadal hormones induce notable plastic effects in the density of dendritic spines. Dendritic spines are post-synaptic specializations whose shape and spacing change neuronal excitability. Our aim was to obtain new data on the dendritic spines morphology and density from MePD neurons using the carbocyanine dye Dil under confocal microscopy. In adult male rats, the dendritic spine density of the medial branches of the left MePD (mean +/- SD) was 1.15 +/- 0.67 spines/dendritic mu m. From the total sampled, approximately 53% of the spines were classified as thin, 22.5% as ""mushroom-like"", and 21.5% as stubby/wide. Other spine shapes (3%) included those ramified, with a filopodium-like or a gemule appearance, and others with a protruding spinule. Additional experiment joining Dil and synaptophysin (a pre-synaptic protein) labeling suggested synaptic sites on dendritic shafts and spines. Dendritic spines showed synaptophysin puncta close to their head and neck, although some spines had no evident labeled puncta on them or, conversely, multiple puncta appeared upon one spine. These results advance previous light microscopy results by revealing features and complexities of the dendritic spines at the same time that give new insight on the possible synaptic organization of the adult rat MePD. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The Golgi method has been used for over a century to describe the general morphology of neurons in the nervous system of different species. The ""single-section"" Golgi method of Gabbott and Somogyi (1984) and the modifications made by Izzo et al. (1987) are able to produce consistent results. Here, we describe procedures to show cortical and subcortical neurons of human brains immersed in formalin for months or even years. The tissue was sliced with a vibratome, post-fixed in a combination of paraformaldehyde and picric acid in phosphate buffer, followed by osmium tetroxide and potassium dicromate, ""sandwiched"" between cover slips, and immersed in silver nitrate. The whole procedure takes between 5 and 11 days to achieve good results. The Golgi method has its characteristic pitfalls but, with this procedure, neurons and glia appear well-impregnated, allowing qualitative and quantitative studies under light microscopy. This contribution adds to the basic techniques for the study of human nervous tissue with the same advantages described for the ""single-section"" Golgi method in other species; it is easy and fast, requires minimal equipment, and provides consistent results. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Meningiomas are recognized as the most common late complication following radiotherapy. However, cytogenetic studies in childhood atypical radiation-induced meningioma are sporadic, mainly because this condition generally occurs after a long latent period. In the present study we show the results of conventional and molecular cytogenetics in a 14-year-old boy with a secondary atypical meningioma. Apart from numerical changes, we found complex aberrations with the participation of chromosomes 1, 6 and 12. The invariable presence of loss of 1p was demonstrated by fluorescent in situ hybridization (FISH) analysis with probes directed to telomeric regions and by comparative genome hybridization (CGH). Previous cytogenetic studies on adult spontaneous and radiation-associated meningiomas showed loss of chromosome 22 as the most frequent change, followed by loss of the short arm of chromosome 1. To the best of our knowledge this is the first report of highly complex chromosome aberrations in the pediatric setting of meningioma.
Resumo:
Cell adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) and platelet-endothelial cell adhesion molecule-1 (PECAM-1) play an important role in glioma invasion and angiogenesis. The aim of this study was to investigate whether specific genetic polymorphisms of ICAM-1 and PECAM-1 could be associated with glioma development and progression. Single-nucleotide polymorphism in codon 469 of ICAM-1 and codon 125 of PECAM-1 were examined in 158 patients with astrocytomas and 162 controls using polymerase chain reaction and restriction enzyme analysis. The distribution of PECAM-1 polymorphic genotypes in astrocytomas did not show any significant difference. However, a specific ICAM-1 genotype (G/G, corresponding to Lys469Glu) exhibited higher frequency in grade II astrocytomas compared to controls, grade III, and grade IV astrocytomas; suggesting that this polymorphism could be involved in the development of grade II astrocytomas.
Resumo:
Tentorial meningiomas comprise 3-5% of the intracranial meningiomas. Different locations and sinus invasion require special surgical skills. This study aimed to analyze factors influencing the outcome of 29 patients (30 tumors) with tentorial meningiomas surgically treated. The study included 22 female and seven male patients, with age of 18-76 years old, and a follow-up of 6-179 months. Eight tumors were located on the inner tentorial ring, 15 on the outer ring, four were falcotentorial, and three attached/invading the torcula. Outcome was analyzed using survival and recurrence-free survival (RFS) curves. Twenty-seven tumors were WHO grade I and three were grades II-III. Total and subtotal resections were reached in 87.5% and 12.5% of tumors. Survival was better for patients with grade I tumors and similar according to sex, location, size, and extent of resection. Recurrence/regrowing rate was 12.5%. RFS curves were better for patients with grade I or with radical resection and similar according to sex, location, and size. There was no operative mortality. Permanent postoperative cranial nerve deficits occurred in 9.7% (all inner ring tumors). Despite being many times large-sized, surgical treatment of tentorial meningiomas gives good results. Prognostic factors for recurrence were histopathologic grade III and subtotal resection. Radical resection allowed better results. Nevertheless, subtotal resection may be acceptable for cases with cranial nerves or sinuses invasions.
Resumo:
Background: A growing body of evidence has revealed, the involvement of epigenetic alterations in the etiology of astrocytomas. In the present study, we aimed to evaluate the association of DNA methylation of histone deacetylase genes (HDAC) with the etiology of astrocytoma, and the implications for epigenetic therapy. Materials and Methods: Methylation of the HDAC4, HDAC5 and HDAC6 genes was assessed in 29 tumor samples (astrocytomas grades I, III, and IV) and in the glioblastoma cell lines U87, U251, U343, SF188, and T98G by methylation-specific quantitative PCR (MSED-qPCR). Results: Significantly increased methylation of the HDAC5 gene was observed in astrocytomas when compared to non-neoplastic brain samples (p=0.0007) and to glioblastomas cell lines (p=0.001). A heterogenic methylation pattern was evidenced when compared to the glioblastoma cell lines. Distinct effects on methylation and gene expression were observed after in vitro treatment of the different cell lines with decitabine. Conclusion: Our results suggest that abnormal methylation of HDAC genes is involved in the etiology of astrocytomas and indicate that loci-specific epigenetic interindividualities might be associated to the differential responses to treatment with decitabine.
Resumo:
Folic acid (FA) supplementation during carcinogenesis is controversial. Considering the impact of liver cancer as a public health problem and mandatory FA fortification in several countries, the role of FA supplementation in hepatocarcinogenesis should be elucidated. We evaluated FA supplementation during early hepatocarcinogenesis. Rats received daily 0.08 mg (FA8 group) or 0.16 mg (FA16 group) of FA/100 g body weight or water (CO group, controls). After a 2-week treatment, animals were subjected to the ""resistant hepatocyte"" model of hepatocarcinogenesis (initiation with diethylnitrosamine, selection/promotion with 2-acetylaminofluorene and partial hepatectomy) and euthanized after 8 weeks of treatment. Compared to the CO group, the FA16 group presented: reduced (p < 0.05) number of persistent and increased (p < 0.05) number of remodeling glutathione S-transferase (GST-P) positive preneoplastic lesions (PNL); reduced (p < 0.05) cell proliferation in persistent GST-P positive PNL; decreased (p < 0.05) hepatic DNA damage; and a tendency (p < 0.10) for decreased c-myc expression in microdissected PNL. Regarding all these parameters, no differences (p > 0.05) were observed between CO and FA8 groups. FA-treated groups presented increased hepatic levels of S-adenosylmethionine but only FA16 group presented increased S-adenosylmethionine/S-adenosylhomocysteine ratio. No differences (p > 0.05) were observed between experimental groups regarding apoptosis in persistent and remodeling GST-P positive PNL, and global DNA methylation pattern in microdissected PNL. Altogether, the FA16 group, but not the FA8 group, presented chemopreventive activity. Reversion of PNL phenotype and inhibition of DNA damage and of c-myc expression represent relevant FA cellular and molecular effects.
Resumo:
Primary lung tumors are rare in children, and mucoepidermoid carcinoma (MEC) represents less than 10% of them. Additionally, MEC arising from bronchogenic cysts (BC) is particularly unusual. We describe the clinical and genetic findings on a MEC occurring within a previous location of a BC in an adolescent. This particular association has not been previously reported. The lesion revealed normal karyotype without the typical t(11;19)(q21;p13) translocation. Cyclin D1 overexpression (165-fold increase) was demonstrated by real-time PCR although FISH assessment showed normal hybridization at 11q13. Information on these unusual clinical presentations may present relevant insight on tumorigenesis of infrequent pediatric pulmonary tumors. Pediatr Blood Cancer 2011;56:311-313. (C) 2010 Wiley-Liss, Inc.
Resumo:
This article presents data on the fortification of foods, necessary as an important public health approach for the success in reducing anemia. The use of food vehicles, iron salts and their costs, as well as recent work on iron fortification of foods in Brazil are reviewed. Recent research serves as a cornerstone for countries that attempt to implement permanent, long-lasting iron fortification programs aimed at the prevention of anemia considering cultural habits, type of iron salts and at-risk groups.
Resumo:
In this study, we have addressed the role of H2S in modulating neutrophil migration in either innate (LPS-challenged naive mice) or adaptive (methylated BSA (mBSA)-challenged immunized mice) immune responses. Treatment of mice with H S synthesis inhibitors, DL-propargylglycine (PAG) or beta-cyanoalanine, reduced neutrophil migration induced by LPS or methylated BSA (mBSA) into the peritoneal cavity and by mBSA into the femur/tibial joint of immunized mice. This effect was associated with decreased leukocyte rolling, adhesion, and P-selectin and ICAM-1 expression on endothelium. Predictably, treatment of animals with the H2S donors, NaHS or Lawesson`s reagent, enhanced these parameters. Moreover, the NaHS enhancement of neutrophil migration was not observed in ICAM-1-deficient mice. Neither PAG nor NaHS treatment changed LPS-induced CD18 expression on neutrophils, nor did the LPS- and mBSA-induced release of neutrophil chemoattractant mediators TNF-alpha, keratinocyte-derived chemokine, and LTB4. Furthermore, in vitro MIP-2-induced neutrophil chemotaxis was inhibited by PAG and enhanced by NaHS treatments. Accordingly, MIP-2-induced CXCR2 internalization was enhanced by PAG and inhibited by NaHS treatments. Moreover, NaHS prevented MIP-2-induced CXCR2 desensitization. The PAG and NaHS effects correlated, respectively, with the enhancement and inhibition of MIP-2-induced G protein-coupled receptor kinase 2 expression. The effects of NaHS on neutrophil migration both in vivo and in vitro, together with CXCR2 internalization and G protein-coupled receptor kinase 2 expression were prevented by the ATP-sensitive potassium (K-ATP(+)) channel blocker, glybenclamide. Conversely, diazoxide, a K-ATP(+) channel opener, increased neutrophil migration in vivo. Together, our data suggest that during the inflammatory response, H`S augments neutrophil adhesion and locomotion, by a mechanism dependent on K-ATP(+) channels.