997 resultados para Air-core
Resumo:
OBJETIVO: O objetivo deste estudo foi desenvolver um padrão de avaliação diagnóstica pela Core biopsy com agulha de 16G em lesões mamárias. Utilizando critérios ecográficos padronizados e relacionando os resultados ao tamanho das lesões investigadas e avaliando o número ideal de fragmentos a serem colhidos. MÉTODOS: Estudo prospectivo de maio de 2004 a setembro de 2005 em 79 pacientes com lesões incluídas nas categorias 2, 3, 4 e 5, segundo Bi-RADS® US, realizando Core Biopsy com agulha de 16G, retirando-se cinco fragmentos numerados e colocados individualmente em frascos com formol a 10%. RESULTADOS: De 84 biópsias realizadas houve 81 diagnósticos conclusivos (96%), com 43 malignos (51%) e 38 benignos (45%). A eficácia da Core biopsy aumenta com o número de amostras colhidas: com uma amostra é de 95,24%,duas amostras 96,93%; três amostras 98,8%; quatro amostras 98,81%; cinco amostras 100%. CONCLUSÃO: A retirada de três fragmentos foi suficiente para um resultado satisfatório.
Resumo:
OBJECTIVE: to evaluate the accuracy of frozen section histopathology from fragments of tissue obtained by percutaneous core needle biopsy of palpable tumors in the diagnosis of breast cancer. METHODS: a cohort study was performed on 57 patients with palpable tumors and suspected breast cancer undergoing percutaneous thick needle core biopsy. The fragments were analyzed by the same pathologist. RESULTS: frozen section diagnosed 16 benign cases (28.6%) and 40 malignant (71.4%), whereas paraffin showed that 15 were benign (26.8%) and 41 malignant (73.2%). Histopathological examinations were concordant in 55 cases and there was one false-negative (6.2%). Statistics rates were: negative predictive value of 93.8%, positive predictive value of 100%, no false-positive (0%), one false negative (6.2%), specificity of 100%, sensitivity of 97 6%; observed agreement = 98.2%; expected agreement = 59.9%, Kappa = 0.955 [ 95% CI = 0.925-0.974, p < 0.01 ]. CONCLUSIONS: frozen section histopathological findings showed excellent correlation with the findings by the technique in paraffin in the fragments of palpable breast tumors obtained by thick needle percutaneous core biopsy (98.2% accuracy). Therefore, in these patients, it was possible to anticipate the diagnosis, staging and the breast cancer treatment planning.
Resumo:
Multiprocessing is a promising solution to meet the requirements of near future applications. To get full benefit from parallel processing, a manycore system needs efficient, on-chip communication architecture. Networkon- Chip (NoC) is a general purpose communication concept that offers highthroughput, reduced power consumption, and keeps complexity in check by a regular composition of basic building blocks. This thesis presents power efficient communication approaches for networked many-core systems. We address a range of issues being important for designing power-efficient manycore systems at two different levels: the network-level and the router-level. From the network-level point of view, exploiting state-of-the-art concepts such as Globally Asynchronous Locally Synchronous (GALS), Voltage/ Frequency Island (VFI), and 3D Networks-on-Chip approaches may be a solution to the excessive power consumption demanded by today’s and future many-core systems. To this end, a low-cost 3D NoC architecture, based on high-speed GALS-based vertical channels, is proposed to mitigate high peak temperatures, power densities, and area footprints of vertical interconnects in 3D ICs. To further exploit the beneficial feature of a negligible inter-layer distance of 3D ICs, we propose a novel hybridization scheme for inter-layer communication. In addition, an efficient adaptive routing algorithm is presented which enables congestion-aware and reliable communication for the hybridized NoC architecture. An integrated monitoring and management platform on top of this architecture is also developed in order to implement more scalable power optimization techniques. From the router-level perspective, four design styles for implementing power-efficient reconfigurable interfaces in VFI-based NoC systems are proposed. To enhance the utilization of virtual channel buffers and to manage their power consumption, a partial virtual channel sharing method for NoC routers is devised and implemented. Extensive experiments with synthetic and real benchmarks show significant power savings and mitigated hotspots with similar performance compared to latest NoC architectures. The thesis concludes that careful codesigned elements from different network levels enable considerable power savings for many-core systems.
Resumo:
Energy efficiency is one of the major objectives which should be achieved in order to implement the limited energy resources of the world in a sustainable way. Since radiative heat transfer is the dominant heat transfer mechanism in most of fossil fuel combustion systems, more accurate insight and models may cause improvement in the energy efficiency of the new designed combustion systems. The radiative properties of combustion gases are highly wavelength dependent. Better models for calculating the radiative properties of combustion gases are highly required in the modeling of large scale industrial combustion systems. With detailed knowledge of spectral radiative properties of gases, the modeling of combustion processes in the different applications can be more accurate. In order to propose a new method for effective non gray modeling of radiative heat transfer in combustion systems, different models for the spectral properties of gases including SNBM, EWBM, and WSGGM have been studied in this research. Using this detailed analysis of different approaches, the thesis presents new methods for gray and non gray radiative heat transfer modeling in homogeneous and inhomogeneous H2O–CO2 mixtures at atmospheric pressure. The proposed method is able to support the modeling of a wide range of combustion systems including the oxy-fired combustion scenario. The new methods are based on implementing some pre-obtained correlations for the total emissivity and band absorption coefficient of H2O–CO2 mixtures in different temperatures, gas compositions, and optical path lengths. They can be easily used within any commercial CFD software for radiative heat transfer modeling resulting in more accurate, simple, and fast calculations. The new methods were successfully used in CFD modeling by applying them to industrial scale backpass channel under oxy-fired conditions. The developed approaches are more accurate compared with other methods; moreover, they can provide complete explanation and detailed analysis of the radiation heat transfer in different systems under different combustion conditions. The methods were verified by applying them to some benchmarks, and they showed a good level of accuracy and computational speed compared to other methods. Furthermore, the implementation of the suggested banded approach in CFD software is very easy and straightforward.
Resumo:
kuv., 14 x 22 cm
Resumo:
kuv., 14 x 22 cm
Resumo:
OBJETIVO: Determinar o grau de subestimação de core biopsy, guiada por imagem, de lesões impalpáveis da mama subsequentemente submetidas à exérese cirúrgica. MÉTODOS: Foram revisados retrospectivamente 352 casos com biópsias de fragmento que foram submetidos à cirurgia entre fevereiro de 2000 e dezembro de 2005, cujo laudo histopatológico estava registrado no sistema interno de informação. Os resultados foram comparados com os da cirurgia e a taxa de subestimação foi calculada dividindo-se o número de carcinoma in situ e/ou invasivo à cirurgia pelo número de lesões de alto risco ou carcinoma in situ que foram submetidas à cirurgia. O grau de concordância entre os resultados foi obtido pelo percentual de concordância e pelo coeficiente kappa de Cohen. A associação das variáveis estudadas com a subestimação do diagnóstico foi verificada pelos testes do c2 exato de Fisher, ANOVA e Mann-Whitney U. O risco de subestimação foi medido por meio do risco relativo acompanhado dos respectivos intervalos com 95% de confiança (IC95%). RESULTADOS: Core biopsy foi inconclusiva em 15,6%. O laudo histopatológico foi benigno em 26,4%, sugestivo de lesão de alto risco em 12,8% e maligno em 45,2%. A concordância entre a core biopsy e a cirurgia foi de 82,1% (kappa=0,75). A taxa de falso negativo foi de 5,4% e a lesão foi completamente removida em 3,4%. A taxa de subestimação foi de 9,1% e esteve associada com BI-RADS® categoria 5 (p=0,01), microcalcificações (p < 0,001) e estereotaxia (p= 0,002). Todos os casos subestimados apresentavam diâmetro menor que 20 mm e em todos foram retirados pelo menos cinco fragmentos. A taxa de subestimação para lesões de alto risco foi de 31,1%, 41,2%, para hiperplasia ductal atípica, 31,2% para lesões papilíferas, 16,7% para tumor filóides e 41,9% para carcinoma ductal in situ. CONCLUSÕES: Core biopsy guiada por imagem é um procedimento confiável, contudo permanece a recomendação de ressecção cirúrgica de lesões de alto risco detectadas à biópsia de fragmento já que não foi possível estabelecer características clínicas, imaginológicas, do procedimento e patológicas que pudessem predizer subestimação e evitar a cirurgia. Amostras representativas da lesão são mais importantes que o número de fragmentos.
Resumo:
Through advances in technology, System-on-Chip design is moving towards integrating tens to hundreds of intellectual property blocks into a single chip. In such a many-core system, on-chip communication becomes a performance bottleneck for high performance designs. Network-on-Chip (NoC) has emerged as a viable solution for the communication challenges in highly complex chips. The NoC architecture paradigm, based on a modular packet-switched mechanism, can address many of the on-chip communication challenges such as wiring complexity, communication latency, and bandwidth. Furthermore, the combined benefits of 3D IC and NoC schemes provide the possibility of designing a high performance system in a limited chip area. The major advantages of 3D NoCs are the considerable reductions in average latency and power consumption. There are several factors degrading the performance of NoCs. In this thesis, we investigate three main performance-limiting factors: network congestion, faults, and the lack of efficient multicast support. We address these issues by the means of routing algorithms. Congestion of data packets may lead to increased network latency and power consumption. Thus, we propose three different approaches for alleviating such congestion in the network. The first approach is based on measuring the congestion information in different regions of the network, distributing the information over the network, and utilizing this information when making a routing decision. The second approach employs a learning method to dynamically find the less congested routes according to the underlying traffic. The third approach is based on a fuzzy-logic technique to perform better routing decisions when traffic information of different routes is available. Faults affect performance significantly, as then packets should take longer paths in order to be routed around the faults, which in turn increases congestion around the faulty regions. We propose four methods to tolerate faults at the link and switch level by using only the shortest paths as long as such path exists. The unique characteristic among these methods is the toleration of faults while also maintaining the performance of NoCs. To the best of our knowledge, these algorithms are the first approaches to bypassing faults prior to reaching them while avoiding unnecessary misrouting of packets. Current implementations of multicast communication result in a significant performance loss for unicast traffic. This is due to the fact that the routing rules of multicast packets limit the adaptivity of unicast packets. We present an approach in which both unicast and multicast packets can be efficiently routed within the network. While suggesting a more efficient multicast support, the proposed approach does not affect the performance of unicast routing at all. In addition, in order to reduce the overall path length of multicast packets, we present several partitioning methods along with their analytical models for latency measurement. This approach is discussed in the context of 3D mesh networks.
Resumo:
Tutkimuksessa tarkastellaan air policingia turvallisuuspoliittisena kysymyksenä Suomessa, Islannin ilmavalvontahankkeen kautta. Tavoitteena oli selvittää Islannin ilmavalvonnasta käydyn julkisen keskustelun perusteella, miten air policing näyttäytyy Suomen turvallisuuspolitiikassa. Air policingilla tarkoitetaan vieraan suvereenin valtion ilmatilan koskemattomuuden valvontaa ja turvaamista rauhan aikana. Suomen turvallisuuspolitiikassa air policing on aiemmin käyttämätön työväline. Tutkimuksessa analysoitiin Suomessa käytyä julkista keskustelua Islannin ilmavalvonnasta. Keskustelua tutkittiin puolustusvoimien lakisääteisten tehtävien ja Suomen sotilaallisen liittoutumattomuuden näkökulmista. Tarkastelujen perusteella tehtiin johtopäätöksiä air policingista Suomen turvallisuuspoliittisena kysymyksenä. Tutkimuksen aineisto koostui Islannin ilmavalvontaa käsittelevistä Helsingin Sanomien, Uuden Suomen, Kylkiraudan ja Sotilasaikakauslehden kirjoituksista, eduskunnan täysistuntojen pöytäkirjoista sekä keskeisten turvallisuuspoliittisten päättäjien lausunnoista. Tarkasteltava ajanjakso oli vuoden 2009 alusta vuoden 2012 loppuun. Tutkimusmenetelmä oli sisällönanalyysi. Islannin ilmavalvonnasta käyty julkinen keskustelu koostui lyhyestä jaksosta vuonna 2009 sekä vilkkaasta ja laaja-alaisesta keskustelusta vuonna 2012. Tärkeimpiä sisältöteemoja olivat Nato ja Suomen liittoutumattomuus sekä pohjoismainen yhteistyö. Keskustelussa muodostui vastakkainasettelu, jossa toinen mielipide kannatti ja toinen vastusti Suomen osallistumista Islannin ilmavalvontaan. Puolustusvoimien lakisääteisiä tehtäviä käsiteltiin julkisuudessa vähän. Sen sijaan Suomen sotilaallinen liittoutumattomuus oli keskustelun ytimessä. Islannin ilmavalvontahankkeen kriitikot katsoivat osallistumisen vaarantavan Suomen liittoutumattomuuden Islannin Nato-jäsenyyden vuoksi. Hankkeen kannattajat perustelivat osallistumisen olevan osan tiivistyvää pohjoismaista puolustusyhteistyötä. Suomen ylin turvallisuuspoliittinen johto on ollut valmis ottamaan käyttöön air policingin Islannin ilmavalvontahankkeen yhteydessä. Kysymys on osoittautunut poliittisesti vaikeaksi, eikä konsensusta ole saavutettu. Maaliskuussa 2013 näyttää siltä, että mahdollinen osallistuminen Islannin ilmavalvontaan toteutuu harjoitusmuotoisena, jolloin siinä ei ole kyse varsinaisesta air policingista.
Resumo:
An experimental investigation is performed in a turbulent flow in a seven wire-wrapped rod bundle, mounted in an open air facility. Static pressure distributions are measured on central and peripheral rods. By using a Preston tube, the wall shear stress profiles are experimentally obtained along the perimeter of the rods. The geometric parameters of the test section are P/D=1.20 and H/D=15. The measuring section is located at L/D=40 from the air inlet. It is observed that the dimensionless static pressure and wall shear stress profiles are nearly independent of the Reynolds number and strongly dependent of the wire-spacer position, with abrupt variations of the parameters in the neighborhood of the wires.
Resumo:
An experimental apparatus for the study of core annular flows of heavy oil and water at room temperature has been set up and tested at laboratory scale. The test section consists of a 2.75 cm ID galvanized steel pipe. Tap water and a heavy oil (17.6 Pa.s; 963 kg/m³) were used. Pressure drop in a vertical upward test section was accurately measured for oil flow rates in the range 0.297 - 1.045 l/s and water flow rates ranging from 0.063 to 0.315 l/s. The oil-water input ratio was in the range 1-14. The measured pressure drop comprises gravitational and frictional parts. The gravitational pressure drop was expressed in terms of the volumetric fraction of the core, which was determined from a correlation developed by Bannwart (1998b). The existence of an optimum water-oil input ratio for each oil flow rate was observed in the range 0.07 - 0.5. The frictional pressure drop was modeled to account for both hydrodynamic and net buoyancy effects on the core. The model was adjusted to fit our data and shows excellent agreement with data from another source (Bai, 1995).
Resumo:
Waste has been incinerated for energy utilization for more than a hundred years, but the harmful emissions emitted from the incineration plants did not begin to cause concern until the 1980s. Many plants were shutdown and the waste incineration plant in Kyläsaari Helsinki was one of them. In later years, new landfill regulations have increased the interest in waste incineration. During the last year, four new plants were taken into operation in Finland, Westenergy in Vaasa among them. The presence of dust has been observed indoors at Westenergy waste incineration plant. Dust is defined as particles with a diameter above 10 μm, while fine particles have a diameter smaller than 2.5 μm, ultrafine under 0.1 μm and nanoparticles under 0.05 μm. In recent years, the focus of particle health research has been changed to investigate smaller particles. Ultrafine particles have been found to be more detrimental to health than larger particles. Limit values regulating the concentrations of ultrafine particles have not been determined yet. The objective of this thesis was to investigate dust and particles present inside the Westenergy waste incineration facility. The task was to investigate the potential pollutant sources and to give recommendations of how to minimize the presence of dust and particles in the power plant. The total particle number concentrations and size distributions where measured at 15 points inside the plant with an Engine Exhaust Particle Sizer (EEPS) Spectrometer. The measured particles were mainly in the ultrafine size range. Dust was only visually investigated, since the main purpose was to follow the dust accumulation. The measurement points inside the incineration plant were chosen according to investigate exposure to visitors and workers. At some points probable leakage of emissions were investigated. The measurements were carried out during approximately one month in March–April 2013. The results of the measurements showed that elevated levels of dust and particles are present in the indoor air at the waste incineration plant. The cleanest air was found in the control room, warehouse and office. The most polluted air was near the sources that were investigated due to possible leakage and in the bottom ash hall. However, the concentrations were near measured background concentrations in European cities and no leakage could be detected. The high concentrations were assumed to be a result of a lot of dust and particles present on surfaces that had not been cleaned in a while. The main source of the dust and particles present inside the waste incineration plant was thought to be particles and dust from the outside air. Other activities in the area around the waste incineration facility are ground work activities, stone crushing and traffic, which probably are sources of particle formation. Filtration of the outside air prior entering the facility would probably save personnel and visitors from nuisance and save in cleaning and maintenance costs.
Resumo:
The superconducting gap is a basic character of a superconductor. While the cuprates and conventional phonon-mediated superconductors are characterized by distinct d- and s-wave pairing symmetries with nodal and nodeless gap distributions respectively, the superconducting gap distributions in iron-based superconductors are rather diversified. While nodeless gap distributions have been directly observed in Ba1–xKxFe2As2, BaFe2–xCoxAs2, LiFeAs, KxFe2–ySe2, and FeTe1–xSex, the signatures of a nodal superconducting gap have been reported in LaOFeP, LiFeP, FeSe, KFe2As2, BaFe2–xRuxAs2, and BaFe2(As1–xPx)2. Due to the multiplicity of the Fermi surface in these compounds s± and d pairing states can be both nodeless and nodal. A nontrivial orbital structure of the order parameter, in particular the presence of the gap nodes, leads to effects in which the disorder is much richer in dx2–y2-wave superconductors than in conventional materials. In contrast to the s-wave case, the Anderson theorem does not work, and nonmagnetic impurities exhibit a strong pair-breaking influence. In addition, a finite concentration of disorder produces a nonzero density of quasiparticle states at zero energy, which results in a considerable modification of the thermodynamic and transport properties at low temperatures. The influence of order parameter symmetry on the vortex core structure in iron-based pnictide and chalcogenide superconductors has been investigated in the framework of quasiclassical Eilenberger equations. The main results of the thesis are as follows. The vortex core characteristics, such as, cutoff parameter, ξh, and core size, ξ2, determined as the distance at which density of the vortex supercurrent reaches its maximum, are calculated in wide temperature, impurity scattering rate, and magnetic field ranges. The cutoff parameter, ξh(B; T; Г), determines the form factor of the flux-line lattice, which can be obtained in _SR, NMR, and SANS experiments. A comparison among the applied pairing symmetries is done. In contrast to s-wave systems, in dx2–y2-wave superconductors, ξh/ξc2 always increases with the scattering rate Г. Field dependence of the cutoff parameter affects strongly on the second moment of the magnetic field distributions, resulting in a significant difference with nonlocal London theory. It is found that normalized ξ2/ξc2(B/Bc2) dependence is increasing with pair-breaking impurity scattering (interband scattering for s±-wave and intraband impurity scattering for d-wave superconductors). Here, ξc2 is the Ginzburg-Landau coherence length determined from the upper critical field Bc2 = Φ0/2πξ2 c2, where Φ0 is a flux quantum. Two types of ξ2/ξc2 magnetic field dependences are obtained for s± superconductors. It has a minimum at low temperatures and small impurity scattering transforming in monotonously decreasing function at strong scattering and high temperatures. The second kind of this dependence has been also found for d-wave superconductors at intermediate and high temperatures. In contrast, impurity scattering results in decreasing of ξ2/ξc2(B/Bc2) dependence in s++ superconductors. A reasonable agreement between calculated ξh/ξc2 values and those obtained experimentally in nonstoichiometric BaFe2–xCoxAs2 (μSR) and stoichiometric LiFeAs (SANS) was found. The values of ξh/ξc2 are much less than one in case of the first compound and much more than one for the other compound. This is explained by different influence of two factors: the value of impurity scattering rate and pairing symmetry.