865 resultados para AMYLOIDOGENESIS INHIBITORS
Resumo:
Sewage sludge applied to soils as a fertilizer often contains metals and linear alkylbenzene sulphonate (LAS) as contaminants. These pollutants can be transported to the aquatic environment where they can alter the phosphatase activity in living organisms. The acid phosphatase of algae plays important roles in metabolism such as decomposing organic phosphate into free phosphate and autophagic digestive processes. The order of in vitro inhi- bition of Pseudokirchneriella subcapitata acid phosphatase at the highest concentration tested was LAS[Hg2? = Al 3?[Se4? = Pb2?[Cd2?. A non-competitive inhibi- tion mechanism was obtained for Hg2? (Ki = 0.040 mM) and a competitive inhibition for LAS (Ki = 0.007 mM). In vivo studies with treated algae cultures showed that the inhibition of specific activity was observed in algae exposed during 7 days, in contrast to short term (24 h) treatments with both these chemicals. Our results suggest that the inhibition parameters in vitro did not markedly differ between the two chemicals. On the other hand, in vivo evaluations showed strong differences between both pollu- tants regarding the concentration values and the degree of response.
Entry inhibitors and Carbosilane dendrimers are potent inhibitors of cell-associated HIV-2 infection
Resumo:
Poster presented at the 2015 Keystone Symposia Conference X5: HIV Vaccines. Banff, Alberta, Canada, 22-27 March 2015
Resumo:
This is a non-final version of an article published in final form in AIDS. 2016 Jul 17;30(11):1691-701.
Resumo:
The phosphatidylinositide 3-kinases (PI3K) and mammalian target of rapamycin-1 (mTOR1) are two key targets for anti-cancer therapy. Predicting the response of the PI3K/AKT/mTOR1 signalling pathway to targeted therapy is made difficult because of network complexities. Systems biology models can help explore those complexities but the value of such models is dependent on accurate parameterisation. Motivated by a need to increase accuracy in kinetic parameter estimation, and therefore the predictive power of the model, we present a framework to integrate kinetic data from enzyme assays into a unified enzyme kinetic model. We present exemplar kinetic models of PI3K and mTOR1, calibrated on in vitro enzyme data and founded on Michaelis-Menten (MM) approximation. We describe the effects of an allosteric mTOR1 inhibitor (Rapamycin) and ATP-competitive inhibitors (BEZ2235 and LY294002) that show dual inhibition of mTOR1 and PI3K. We also model the kinetics of phosphatase and tensin homolog (PTEN), which modulates sensitivity of the PI3K/AKT/mTOR1 pathway to these drugs. Model validation with independent data sets allows investigation of enzyme function and drug dose dependencies in a wide range of experimental conditions. Modelling of the mTOR1 kinetics showed that Rapamycin has an IC50 independent of ATP concentration and that it is a selective inhibitor of mTOR1 substrates S6K1 and 4EBP1: it retains 40% of mTOR1 activity relative to 4EBP1 phosphorylation and inhibits completely S6K1 activity. For the dual ATP-competitive inhibitors of mTOR1 and PI3K, LY294002 and BEZ235, we derived the dependence of the IC50 on ATP concentration that allows prediction of the IC50 at different ATP concentrations in enzyme and cellular assays. Comparison of the drug effectiveness in enzyme and cellular assays showed that some features of these drugs arise from signalling modulation beyond the on-target action and MM approximation and require a systems-level consideration of the whole PI3K/PTEN/AKT/mTOR1 network in order to understand mechanisms of drug sensitivity and resistance in different cancer cell lines. We suggest that using these models in systems biology investigation of the PI3K/AKT/mTOR1 signalling in cancer cells can bridge the gap between direct drug target action and the therapeutic response to these drugs and their combinations.
Resumo:
Inhibitors are the main complication in the treatment of haemophilia. A high percentage of adult patients were infected in past decades by HIV and HCV through factor concentrates. This study compared the quality of life of patients with hemophilia (QoL) and illness behavior in adult patients with haemophilia according to the development of inhibitors and HIV or HCV co-infection. This is an observational clinical study. 69 adult patients with haemophilia participated. We used A36 Hemophilia-QoL and IBQ questionnaires to measure the QoL and illness behavior, respectively. The dependent variables were type and severity of haemophilia, type of treatment, development of inhibitors, HIV and HCV infection, or both. We observed significant differences in the perception of QoL and illness behavior in patients according to the development of inhibitor and coinfection with HIV-HCV. We obtained four groups: the first and second group, which comprise 67% of the sample, exhibit behavior patterns indicating good adaptation to the disease and good QoL. The other two groups, which comprise 33% of the sample show behavior that is not well adapted to the disease, and poor quality of life. The development of inhibitors itself does not influence the quality of life and illness behavior in patients with haemophilia. Patients infected with HIV or HCV do not have a worse illness behavior compared to those uninfected. The development of inhibitors and HIV-HCV co-infection has a negative impact on quality of life and illness behavior in patients with haemophilia.
Resumo:
A library of isoquinolinone and azepanone derivatives were screened for both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activity. The strategy adopted included (a) in vitro biological assays, against eel AChE (EeAChE) and equine serum BuChE (EqBuChE) in order to determine the compounds IC50 and their dose-response activity, consolidated by (b) molecular docking studies to evaluate the docking poses and interatomic interactions in the case of the hit compounds, validated by STD-NMR studies. Compound (1f) was identified as one of these hits with an IC50 of 89.5 mu M for EeAChE and 153.8 mu M for EqBuChE, (2a) was identified as a second hit with an IC50 of 108.4 mu M (EeAChE) and 277.8 mu M (EqBuChE). In order to gain insights into the binding mode and principle active site interactions of these molecules, (R)-(1f) along with 3 other analogues (also as the R-enantiomer) were docked into both RhAChE and hBuChE models. Galantamine was used as the benchmark. The docking study was validated by performing an STD-NMR study of (1f) with EeAChE using galantamine as the benchmark.
Resumo:
2016
Resumo:
Shared Services (SS) involves the convergence and streamlining of an organisation’s functions to ensure timely service delivery as effectively and efficiently as possible. As a management structure designed to promote value generation, cost savings and improved service delivery by leveraging on economies of scale, the idea of SS is driven by cost reduction and improvements in quality levels of service and efficiency. Current conventional wisdom is that the potential for SS is increasing due to the increasing costs of changing systems and business requirements for organisations and in implementing and running information systems. In addition, due to commoditisation of large information systems such as enterprise systems, many common, supporting functions across organisations are becoming more similar than not, leading to an increasing overlap in processes and fuelling the notion that it is possible for organisations to derive benefits from collaborating and sharing their common services through an inter-organisational shared services (IOSS) arrangement. While there is some research on traditional SS, very little research has been done on IOSS. In particular, it is unclear what are the potential drivers and inhibitors of IOSS. As the concepts of IOSS and SS are closely related to that of Outsourcing, and their distinction is sometimes blurred, this research has the first objective of seeking a clear conceptual understanding of the differences between SS and Outsourcing (in motivators, arrangements, benefits, disadvantages, etc) and based on this conceptual understanding, the second objective of this research is to develop a decision model (Shared Services Potential model) which would aid organisations in deciding which arrangement would be more appropriate for them to adopt in pursuit of process improvements for their operations. As the context of the study is on universities in higher education sharing administrative services common to or across them and with the assumption that such services were homogenous in nature, this thesis also reports on a case study. The case study involved face to face interviews from representatives of an Australian university to explore the potential for IOSS. Our key findings suggest that it is possible for universities to share services common across them as most of them were currently using the same systems although independently.
Resumo:
This report documents work carried out in order to develop and prove a model for predicting the lifetime of painted metal components, with a particular emphasis on Colorbond® due to its prominent use throughout Australia. This work continues on from previous developments reported in 2002-059-B No. 12 [1]. Extensions of work included the following research: (1) Experimental proving of the leaching of chromate inhibitors from Colorbond® materials. (2) Updated models for the accumulation of salts and the time of wetness for gutters, based upon field observations. (3) Electrochemical Impedance Spectroscopy investigations aimed at correlating the corrosion rates of weathered Colorbond® with those predicted by modeling.
Resumo:
An improved synthetic route to α(1→3)/α(1→2)-linked mannooligosaccharides has been developed and applied to a more efficient preparation of the potent anti-angiogenic sulfated pentasaccharide, benzyl Manα(1→3)-Manα(1→3)-Manα(1→3)-Manα(1→2)-Man hexadecasulfate, using only two monosaccharide building blocks. Of particular note are improvements in the preparation of both building blocks and a simpler, final deprotection strategy. The route also provides common intermediates for the introduction of aglycones other than benzyl, either at the building block stage or after oligosaccharide assembly. The anti-angiogenic activity of the synthesized target compound was confirmed via the rat aortic assay.
Resumo:
Rapid advances in educational and information communications technology (ICT)have encouraged some educators to move beyond traditional face to face and distance education correspondence modes toward a rich, technology mediated e-learning environment. Ready access to multimedia at the desktop has provided the opportunity for educators to develop flexible, engaging and interactive learning resources incorporating multimedia and hypermedia. However, despite this opportunity, the adoption and integration of educational technologies by academics across the tertiary sector has typically been slow. This paper presents the findings of a qualitative study that investigated factors influencing the manner in which academics adopt and integrate educational technology and ICT. The research was conducted at a regional Australian university, the University of Southern Queensland (USQ), and focused on the development of e-learning environments. These e-learning environments include a range of multimodal learning objects and multiple representations of content that seek to cater for different learning styles and modal preferences, increase interaction, improve learning outcomes, provide a more inclusive and equitable curriculum and more closely mirror the on campus learning experience. This focus of this paper is primarily on the barriers or inhibitors academics reported in the study, including institutional barriers, individual inhibitors and pedagogical concerns. Strategies for addressing these obstacles are presented and implications and recommendations for educational institutions are discussed.
Resumo:
Technology platforms originally developed for tissue engineering applications produce valuable models that mimic three-dimensional (3D) tissue organization and function to enhance the understanding of cell/tissue function under normal and pathological situations. These models show that when replicating physiological and pathological conditions as closely as possible investigators are allowed to probe the basic mechanisms of morphogenesis, differentiation and cancer. Significant efforts investigating angiogenetic processes and factors in tumorigenesis are currently undertaken to establish ways of targeting angiogenesis in tumours. Anti-angiogenic agents have been accepted for clinical application as attractive targeted therapeutics for the treatment of cancer. Combining the areas of tumour angiogenesis, combination therapies and drug delivery systems is therefore closely related to the understanding of the basic principles that are applied in tissue engineering models. Studies with 3D model systems have repeatedly identified complex interacting roles of matrix stiffness and composition, integrins, growth factor receptors and signalling in development and cancer. These insights suggest that plasticity, regulation and suppression of these processes can provide strategies and therapeutic targets for future cancer therapies. The historical perspective of the fields of tissue engineering and controlled release of therapeutics, including inhibitors of angiogenesis in tumours is becoming clearly evident as a major future advance in merging these fields. New delivery systems are expected to greatly enhance the ability to deliver drugs locally and in therapeutic concentrations to relevant sites in living organisms. Investigating the phenomena of angiogenesis and anti-angiogenesis in 3D in vivo models such as the Arterio-Venous (AV) loop mode in a separated and isolated chamber within a living organism adds another significant horizon to this perspective and opens new modalities for translational research in this field.
Resumo:
Height is a complex physical trait that displays strong heritability. Adult height is related to length of the long bones, which is determined by growth at the epiphyseal growth plate. Longitudinal bone growth occurs via the process of endochondral ossification, where bone forms over the differentiating cartilage template at the growth plate. Estrogen plays a major role in regulating longitudinal bone growth and is responsible for inducing the pubertal growth spurt and fusion of the epiphyseal growth plate. However, the mechanism by which estrogen promotes epiphyseal fusion is poorly understood. It has been hypothesised that estrogen functions to regulate growth plate fusion by stimulating chondrocyte apoptosis, angiogenesis and bone cell invasion in the growth plate. Another theory has suggested that estrogen exposure exhausts the proliferative capacity of growth plate chondrocytes, which accelerates the process of chondrocyte senescence, leading to growth plate fusion. The overall objective of this study was to gain a greater understanding of the molecular mechanisms behind estrogen-mediated growth and height attainment by examining gene regulation in chondrocytes and the role of some of these genes in normal height inheritance. With the heritability of height so well established, the initial hypothesis was that genetic variation in candidate genes associated with longitudinal bone growth would be involved in normal adult height variation. The height-related genes FGFR3, CBFA1, ER and CBFA1 were screened for novel polymorphisms using denaturing HPLC and RFLP analysis. In total, 24 polymorphisms were identified. Two SNPs in ER (rs3757323 C>T and rs1801132 G>C) were strongly associated with adult male height and displayed an 8 cm and 9 cm height difference between homozygous genotypes, respectively. The TC haplotype of these SNPs was associated with a 6 cm decrease in height and remarkably, no homozygous carriers of the TC haplotype were identified in tall subjects. No significant associations with height were found for polymorphisms in the FGFR3, CBFA1 or VDR genes. In the epiphyseal growth plate, chondrocyte proliferation, matrix synthesis and chondrocyte hypertrophy are all major contributors to long bone growth. As estrogen plays such a significant role in both growth and final height attainment, another hypothesis of this study was that estrogen exerted its effects in the growth plate by influencing chondrocyte proliferation and mediating the expression of chondrocyte marker genes. The examination of genes regulated by estrogen in chondrocyte-like cells aimed to identify potential regulators of growth plate fusion, which may further elucidate mechanisms involved in the cessation of linear growth. While estrogen did not dramatically alter the proliferation of the SW1353 cell line, gene expression experiments identified several estrogen regulated genes. Sixteen chondrocyte marker genes were examined in response to estrogen concentrations ranging from 10-12 M to 10-8 M over varying time points. Of the genes analysed, IHH, FGFR3, collagen II and collagen X were not readily detectable and PTHrP, GHR, ER, BMP6, SOX9 and TGF1 mRNAs showed no significant response to estrogen treatments. However, the expression of MMP13, CBFA1, BCL-2 and BAX genes were significantly decreased. Interestingly, the majority of estrogen regulated genes in SW1353 cells are expressed in the hypertrophic zone of the growth plate. Estrogen is also known to regulate systemic GH secretion and local GH action. At the molecular level, estrogen functions to inhibit GH action by negatively regulating GH signalling. GH treated SW1353 cells displayed increases in MMP9 mRNA expression (4.4-fold) and MMP13 mRNA expression (64-fold) in SW1353 cells. Increases were also detected in their respective proteins. Treatment with AG490, an established JAK2 inhibitor, blocked the GH mediated stimulation of both MMP9 and MMP13 mRNA expression. The application of estrogen and GH to SW1353 cells attenuated GH-stimulated MMP13 levels, but did not affect MMP9 levels. Investigation of GH signalling revealed that SW1353 cells have high levels of activated JAK2 and exposure to GH, estrogen, AG490 and other signalling inhibitors did not affect JAK2 phosphorylation. Interestingly, AG490 treatment dramatically decreased ERK2 signalling, although GH did stimulate ERK2 phosphorylation above control levels. AG490 also decreased CBFA1 expression, a transcription factor known to activate MMP9 and MMP13. Finally, GH and estrogen treatment increased expression of SOCS3 mRNA, suggesting that SOCS3 may regulate JAK/STAT signalling in SW1353 cells. The modulation of GH-mediated MMP expression by estrogen in SW1353 cells represents a potentially novel mechanism by which estrogen may regulate longitudinal bone growth. However, further investigation is required in order to elucidate the precise mechanisms behind estrogen and GH regulation of MMP13 expression in SW1353 cells. This study has provided additional evidence that estrogen and the ER gene are major factors in the regulation of growth and the determination of adult height. Newly identified polymorphisms in the ER gene not only contribute to our understanding of the genetic basis of human height, but may also be useful in association studies examining other complex traits. This study also identified several estrogen regulated genes and indicated that estrogen modifies the expression of genes which are primarily expressed in the hypertrophic region of the epiphyseal growth plate. Furthermore, synergistic studies incorporating GH and estrogen have revealed the ability of estrogen to attenuate the effects of GH on MMP13 expression, revealing potential pathways by which estrogen may modulate growth plate fusion, longitudinal bone growth and even arthritis.
Resumo:
Sex hormone-binding globulin (SHBG) is a homodimeric plasma glycoprotein that is the major sex steroid carrier-protein in the bloodstream and functions also as a key regulator of steroid bioavailability within target tissues, such as the prostate. Additionally, SHBG binds to prostatic cell membranes via the putative and unidentified SHBG receptor (RSHBG), activating a signal transduction pathway implicated in stimulating both proliferation and expression of prostate specific antigen (PSA) in prostate cell lines in vitro. A yeast-two hybrid assay suggested an interaction between SHBG and kallikrein-related protease (KLK) 4, which is a serine protease implicated in the progression of prostate cancer. The potential interaction between these two proteins was investigated in this PhD thesis to determine whether SHBG is a proteolytic substrate of KLK4 and other members of the KLK family including KLK3/PSA, KLK7 and KLK14. Furthermore, the effects from SHBG proteolytic degradation on SHBG-regulated steroid bioavailability and the activation of the putative RSHBG signal transduction pathway were examined in the LNCaP prostate cancer cell line. SHBG was found to be a proteolytic substrate of the trypsin-like KLK4 and KLK14 in vitro, yielding several proteolysis fragments. Both chymotrypsin-like PSA and KLK7 displayed insignificant proteolytic activity against SHBG. The kinetic parameters of SHBG proteolysis by KLK4 and KLK14 demonstrate a strong enzyme-substrate binding capacity, possessing a Km of 1.2 ± 0.7 µM and 2.1 ± 0.6 µM respectively. The catalytic efficiencies (kcat/Km) of KLK4 and KLK14 proteolysis of SHBG were 1.6 x 104 M-1s-1 and 3.8 x 104 M-1s-1 respectively, which were comparable to parameters previously reported for peptide substrates. N-terminal sequencing of the fragments revealed cleavage near the junction of the N- and C-terminal laminin globulin-like (G-like) domains of SHBG, resulting in the division of the two globulins and ultimately the full degradation of these fragments by KLK4 and KLK14 over time. Proteolytic fragments that may retain steroid binding were rapidly degraded by both proteases, while fragments containing residues beyond the steroid binding pocket were less degraded over the same period of time. Degradation of SHBG was inhibited by the divalent metal cations calcium and zinc for KLK4, and calcium, zinc and magnesium for KLK14. The human secreted serine protease inhibitors (serpins), α1-antitrypsin and α2-antiplasmin, inhibited KLK4 and KLK14 proteolysis of SHBG; α1-antichymotrypsin inhibited KLK4 but not KLK14 activity. The inhibition by these serpins was comparable and in some cases more effective than general trypsin protease inhibitors such as aprotinin and phenylmethanesulfonyl fluoride (PMSF). The binding of 5α-dihydrotestosterone (DHT) to SHBG modulated interactions with KLK4 and KLK14. Steroid-free SHBG was more readily digested by both enzymes than DHT-bound SHBG. Moreover, a binding interaction exists between SHBG and pro-KLK4 and pro-KLK14, with DHT strengthening the binding to pro-KLK4 only. The inhibition of androgen uptake by cultured prostate cancer cells, mediated by SHBG steroid-binding, was examined to assess whether SHBG proteolysis by KLK4 and KLK14 modulated this process. Proteolytic digestion eliminated the ability of SHBG to inhibit the uptake of DHT from conditioned media into LNCaP cells. Therefore, the proteolysis of SHBG by KLK4 and KLK14 increased steroid bioavailability in vitro, leading to an increased uptake of androgens by prostate cancer cells. Interestingly, different transcriptional responses of PSA and KLK2, which are androgen-regulated genes, to DHT-bounsd SHBG treatment were observed between low and high passage number LNCaP cells (lpLNCaP and hpLNCaP respectively). HpLNCaP cells treated with DHT-bound SHBG demonstrated a significant synergistic upregulation of PSA and KLK2 above DHT or SHBG treatment alone, which is similar to previously reported downstream responses from RSHBG-mediated signaling activation. As this result was not seen in lpLNCaP cells, only hpLNCaP cells were further investigated to examine the modulation of potential RSHBG activity by KLK4 and KLK14 proteolysis of SHBG. Contrary to reported results, no increase in intracellular cAMP was observed in hpLNCaP cells when treated with SHBG in the presence and absence of either DHT or estradiol. As a result, the modulation of RSHBG-mediated signaling activation could not be determined. Finally, the identification of the RSHBG from both breast (MCF-7) and prostate cancer (LNCaP) cell lines was attempted. Fluorescently labeled peptides corresponding to the putative receptor binding domain (RBD) of SHBG were shown to be internalized by MCF-7 cells. Crosslinking of the RBD peptide to the cell surfaces of both MCF-7 and LNCaP cells, demonstrated the interaction of the peptide with several targets. These targets were then captured using RBD peptides synthesized onto a hydrophilic scaffold and analysed by mass spectrometry. The samples captured by the RBD peptide returned statistically significantly matches for cytokeratin 8, 18 and 19 as well as microtubule-actin crosslinking factor 1, which may indicate a novel interaction between SHBG and these proteins, but ultimately failed to detect a membrane receptor potentially responsible for the putative RSHBG-mediated signaling. This PhD project has reported the proteolytic processing of SHBG by two members of the kallikrein family, KLK4 and KLK14. The effect of SHBG proteolysis by KLK4 and KLK14 on RSHBG-mediated signaling activation was unable to be determined as the reported signal transduction pathway was not activated after treatment with SHBG, in combination with either DHT or estradiol. However, the digestion of SHBG by these two proteases positively regulated androgen bioavailability to prostate cancer cells in vitro. The increased uptake of androgens is deleterious in prostate cancer due to the promotion of proliferation, metastasis, invasion and the inhibition of apoptosis. The increased bioavailability of androgens, from SHBG proteolysis by KLK4 and KLK14, may therefore promote both carcinogenesis and progression of prostate cancer. Finally, this information may contribute to the development of therapeutic treatment strategies for prostate cancer by inhibiting the proteolysis of SHBG, by KLK4 and KLK14, to prevent the increased uptake of androgens by hormone-dependent cancerous tissues.
Resumo:
Tissue damage resulting from the extracellular production of HOCl (hypochlorous acid) by the MPO (myeloperoxidase)-hydrogen peroxide-chloride system of activated phagocytes is implicated as a key event in the progression of a number of human inflammatory diseases. Consequently, there is considerable interest in the development of therapeutically useful MPO inhibitors. Nitroxides are well established antioxidant compounds of low toxicity that can attenuate oxidative damage in animal models of inflammatory disease. They are believed to exert protective effects principally by acting as superoxide dismutase mimetics or radical scavengers. However, we show here that nitroxides can also potently inhibit MPO-mediated HOCl production, with the nitroxide 4-aminoTEMPO inhibiting HOCl production by MPO and by neutrophils with IC50 values of approx. 1 and 6 μM respectively. Structure–activity relationships were determined for a range of aliphatic and aromatic nitroxides, and inhibition of oxidative damage to two biologically-important protein targets (albumin and perlecan) are demonstrated. Inhibition was shown to involve one-electron oxidation of the nitroxides by the compound I form of MPO and accumulation of compound II. Haem destruction was also observed with some nitroxides. Inhibition of neutrophil HOCl production by nitroxides was antagonized by neutrophil-derived superoxide, with this attributed to superoxide-mediated reduction of compound II. This effect was marginal with 4-aminoTEMPO, probably due to the efficient superoxide dismutase-mimetic activity of this nitroxide. Overall, these data indicate that nitroxides have considerable promise as therapeutic agents for the inhibition of MPO-mediated damage in inflammatory diseases.