935 resultados para whole story model


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The focus of this study is the celebration of Eucharist in Catholic primary schools within the Archdiocese of Brisbane. The context of the contemporary Australian Catholic primary school embodies certain 'problematical realities' in relation to the time-honoured way in which school Eucharistic rituals have been celebrated. These contemporary realities raise a number of issues that impact on school celebrations of Eucharist. The purpose of this study is to explore administrators' differing conceptions of school Eucharistic rituals in an attempt to investigate some of these issues and assist members of individual school communities as they strive to make celebrations of Eucharist appropriate and meaningful for the group gathered. The phenomenographic research approach was adopted, as it is well suited to the purpose of this study and the nature of the research question. Phenomenography is essentially a study of variation. It attempts to map the 'whole' phenomenon under investigation by describing on equal terms all conceptions of the phenomenon and establishing an ordered relationship among them. The purpose of this study and the nature of the research question necessitate an approach that allows the identification and description of the different ways in which administrators' experience school Eucharistic rituals. Accordingly, phenomenography was selected. Members of the Administration Team, namely the principal, the APRE (Assistant to the Principal Religious Education) and, in larger primary schools, the AP A (Assistant to the Principal Administration) share responsibility for leading change in Catholic primary schools in the Archdiocese of Brisbane. In practice, however, principals delegate the role of leading the development of the school's religion program and providing leadership in the religious life of the school community to the APRE (Brisbane Catholic Education, 1997). Informants in this study are nineteen APREs from a variety of Catholic primary schools in the Archdiocese of Brisbane. These APREs come from schools across the archdiocese, rather than from within one particular region. Several significant findings resulted from this study. Firstly, the data show that there are significant differences in how APREs' experience school Eucharistic rituals, although the number of these qualitatively different conceptions is quite limited. The study identifies and describes six distinct yet related conceptions of school Eucharistic rituals. The logical relationship among these conceptions (the outcome space) is presented in the form of a diagram with accompanying explication. The variation among the conceptions is best understood and described in terms of three dimensions of the role of Eucharist in the Catholic primary school and is represented on the model of the outcome space. Individual transcripts suggest that individual APREs tend to emphasise some conceptions more than others. It is the contention of the present study that change in the practice of school Eucharistic rituals is unlikely to occur until all of a school community's conceptions are brought out into the open and articulated. As leaders of change, APREs need to be alerted to their own biases and become aware of alternative ways of conceiving school Eucharistic ritual. It is proposed that the different categories of description and dimensions, represented by the model of the outcome space, can be used to help in the process of articulating a school community's conceptions of Eucharist, with the APRE as facilitator of this process. As a result, the school community develops a better understanding of why their particular school does what it does in relation to school Eucharistic rituals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many large coal mining operations in Australia rely heavily on the rail network to transport coal from mines to coal terminals at ports for shipment. Over the last few years, due to the fast growing demand, the coal rail network is becoming one of the worst industrial bottlenecks in Australia. As a result, this provides great incentives for pursuing better optimisation and control strategies for the operation of the whole rail transportation system under network and terminal capacity constraints. This PhD research aims to achieve a significant efficiency improvement in a coal rail network on the basis of the development of standard modelling approaches and generic solution techniques. Generally, the train scheduling problem can be modelled as a Blocking Parallel- Machine Job-Shop Scheduling (BPMJSS) problem. In a BPMJSS model for train scheduling, trains and sections respectively are synonymous with jobs and machines and an operation is regarded as the movement/traversal of a train across a section. To begin, an improved shifting bottleneck procedure algorithm combined with metaheuristics has been developed to efficiently solve the Parallel-Machine Job- Shop Scheduling (PMJSS) problems without the blocking conditions. Due to the lack of buffer space, the real-life train scheduling should consider blocking or hold-while-wait constraints, which means that a track section cannot release and must hold a train until the next section on the routing becomes available. As a consequence, the problem has been considered as BPMJSS with the blocking conditions. To develop efficient solution techniques for BPMJSS, extensive studies on the nonclassical scheduling problems regarding the various buffer conditions (i.e. blocking, no-wait, limited-buffer, unlimited-buffer and combined-buffer) have been done. In this procedure, an alternative graph as an extension of the classical disjunctive graph is developed and specially designed for the non-classical scheduling problems such as the blocking flow-shop scheduling (BFSS), no-wait flow-shop scheduling (NWFSS), and blocking job-shop scheduling (BJSS) problems. By exploring the blocking characteristics based on the alternative graph, a new algorithm called the topological-sequence algorithm is developed for solving the non-classical scheduling problems. To indicate the preeminence of the proposed algorithm, we compare it with two known algorithms (i.e. Recursive Procedure and Directed Graph) in the literature. Moreover, we define a new type of non-classical scheduling problem, called combined-buffer flow-shop scheduling (CBFSS), which covers four extreme cases: the classical FSS (FSS) with infinite buffer, the blocking FSS (BFSS) with no buffer, the no-wait FSS (NWFSS) and the limited-buffer FSS (LBFSS). After exploring the structural properties of CBFSS, we propose an innovative constructive algorithm named the LK algorithm to construct the feasible CBFSS schedule. Detailed numerical illustrations for the various cases are presented and analysed. By adjusting only the attributes in the data input, the proposed LK algorithm is generic and enables the construction of the feasible schedules for many types of non-classical scheduling problems with different buffer constraints. Inspired by the shifting bottleneck procedure algorithm for PMJSS and characteristic analysis based on the alternative graph for non-classical scheduling problems, a new constructive algorithm called the Feasibility Satisfaction Procedure (FSP) is proposed to obtain the feasible BPMJSS solution. A real-world train scheduling case is used for illustrating and comparing the PMJSS and BPMJSS models. Some real-life applications including considering the train length, upgrading the track sections, accelerating a tardy train and changing the bottleneck sections are discussed. Furthermore, the BPMJSS model is generalised to be a No-Wait Blocking Parallel- Machine Job-Shop Scheduling (NWBPMJSS) problem for scheduling the trains with priorities, in which prioritised trains such as express passenger trains are considered simultaneously with non-prioritised trains such as freight trains. In this case, no-wait conditions, which are more restrictive constraints than blocking constraints, arise when considering the prioritised trains that should traverse continuously without any interruption or any unplanned pauses because of the high cost of waiting during travel. In comparison, non-prioritised trains are allowed to enter the next section immediately if possible or to remain in a section until the next section on the routing becomes available. Based on the FSP algorithm, a more generic algorithm called the SE algorithm is developed to solve a class of train scheduling problems in terms of different conditions in train scheduling environments. To construct the feasible train schedule, the proposed SE algorithm consists of many individual modules including the feasibility-satisfaction procedure, time-determination procedure, tune-up procedure and conflict-resolve procedure algorithms. To find a good train schedule, a two-stage hybrid heuristic algorithm called the SE-BIH algorithm is developed by combining the constructive heuristic (i.e. the SE algorithm) and the local-search heuristic (i.e. the Best-Insertion- Heuristic algorithm). To optimise the train schedule, a three-stage algorithm called the SE-BIH-TS algorithm is developed by combining the tabu search (TS) metaheuristic with the SE-BIH algorithm. Finally, a case study is performed for a complex real-world coal rail network under network and terminal capacity constraints. The computational results validate that the proposed methodology would be very promising because it can be applied as a fundamental tool for modelling and solving many real-world scheduling problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The purpose of this study was to identify candidate metastasis suppressor genes from a mouse allograft model of prostate cancer (NE-10). This allograft model originally developed metastases by twelve weeks after implantation in male athymic nude mice, but lost the ability to metastasize after a number of in vivo passages. We performed high resolution array comparative genomic hybridization on the metastasizing and non-metastasizing allografts to identify chromosome imbalances that differed between the two groups of tumors. Results This analysis uncovered a deletion on chromosome 2 that differed between the metastasizing and non-metastasizing tumors. Bioinformatics filters were employed to mine this region of the genome for candidate metastasis suppressor genes. Of the 146 known genes that reside within the region of interest on mouse chromosome 2, four candidate metastasis suppressor genes (Slc27a2, Mall, Snrpb, and Rassf2) were identified. Quantitative expression analysis confirmed decreased expression of these genes in the metastasizing compared to non-metastasizing tumors. Conclusion This study presents combined genomics and bioinformatics approaches for identifying potential metastasis suppressor genes. The genes identified here are candidates for further studies to determine their functional role in inhibiting metastases in the NE-10 allograft model and human prostate cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a travel time prediction model and evaluates its performance and transferability. Advanced Travelers Information Systems (ATIS) are gaining more and more importance, increasing the need for accurate, timely and useful information to the travelers. Travel time information quantifies the traffic condition in an easy to understand way for the users. The proposed travel time prediction model is based on an efficient use of nearest neighbor search. The model is calibrated for optimal performance using Genetic Algorithms. Results indicate better performance by using the proposed model than the presently used naïve model.