903 resultados para vertical-cavity lasers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a Nd:glass microspherical cavity the enhancement and inhibition of spontaneous-emission processes that are due to cavity QED effects have been observed. The rates of the enhanced spontaneous emission are location dependent and reach a maximum value of more than 10(3) times the free-space value. The large enhancement strongly modifies the decay processes of Nd ions in glass, and the radiative properties of Nd:glass have been changed. As a result a new spectrum including new lasing wavelengths in the Nd:glass sphere has been observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an experimental scheme of a cold atom space clock with a movable cavity. By using a single microwave cavity, we find that the clock has a significant advantage, i.e. the longitudinal cavity phase shift is eliminated. A theoretical analysis has been carried out in terms of the relation between the atomic transition probability and the velocity of the moving cavity by taking into account the velocity distribution of cold atoms. The requirements for the microwave power and its stability for atomic pi/2 excitation at different moving velocities of the cavity lead to the determination of the proper working parameters of the rubidium clock in frequency accuracy 10(-17). Finally, the mechanical stability for the scheme is analysed and the ways of solving the possible mechanical instability of the device are proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is the first time in China that the phase variations and phase shift of microwave cavity in a miniature Rb fountain frequency standard are studied, considering the effect of imperfect metallic walls. Wall losses in the microwave cavity lead to small traveling wave components that deliver power from the cavity feed to the walls of cavity. The small traveling wave components produce a microradian distribution of phase throughout the cavity ity, and therefore distributed cavity phase shifts need to be considered. The microwave cavity is a TE011 circular cylinder copper cavity, with round cut-hole of end plates (14mm in diameter) for access for the atomic flux and two small apertures in the center of the side wall for coupling in microwave power. After attenuation alpha is calculated, field variations in cavity are solved. The field variations of the cavity are given. At the same time, the influences of loaded quality factor QL and diameter/height (2a/d) of the microwave cavity on the phase variations and phase shift are considered. According to the phase variation and phase shift of microwave cavity we select the parameters of cavity, diameter 2a = 69.2mm, height d = 34.6mm, QL = 5000, which will result in an uncertainty delta(Delta f / f0 ) < 4.7 x 10(-17) and meets the requirement for the miniature Rb fountain frequency standard with accuracy 10(-15).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light has long been used for the precise measurement of moving bodies, but the burgeoning field of optomechanics is concerned with the interaction of light and matter in a regime where the typically weak radiation pressure force of light is able to push back on the moving object. This field began with the realization in the late 1960's that the momentum imparted by a recoiling photon on a mirror would place fundamental limits on the smallest measurable displacement of that mirror. This coupling between the frequency of light and the motion of a mechanical object does much more than simply add noise, however. It has been used to cool objects to their quantum ground state, demonstrate electromagnetically-induced-transparency, and modify the damping and spring constant of the resonator. Amazingly, these radiation pressure effects have now been demonstrated in systems ranging 18 orders of magnitude in mass (kg to fg).

In this work we will focus on three diverse experiments in three different optomechanical devices which span the fields of inertial sensors, closed-loop feedback, and nonlinear dynamics. The mechanical elements presented cover 6 orders of magnitude in mass (ng to fg), but they all employ nano-scale photonic crystals to trap light and resonantly enhance the light-matter interaction. In the first experiment we take advantage of the sub-femtometer displacement resolution of our photonic crystals to demonstrate a sensitive chip-scale optical accelerometer with a kHz-frequency mechanical resonator. This sensor has a noise density of approximately 10 micro-g/rt-Hz over a useable bandwidth of approximately 20 kHz and we demonstrate at least 50 dB of linear dynamic sensor range. We also discuss methods to further improve performance of this device by a factor of 10.

In the second experiment, we used a closed-loop measurement and feedback system to damp and cool a room-temperature MHz-frequency mechanical oscillator from a phonon occupation of 6.5 million down to just 66. At the time of the experiment, this represented a world-record result for the laser cooling of a macroscopic mechanical element without the aid of cryogenic pre-cooling. Furthermore, this closed-loop damping yields a high-resolution force sensor with a practical bandwidth of 200 kHZ and the method has applications to other optomechanical sensors.

The final experiment contains results from a GHz-frequency mechanical resonator in a regime where the nonlinearity of the radiation-pressure interaction dominates the system dynamics. In this device we show self-oscillations of the mechanical element that are driven by multi-photon-phonon scattering. Control of the system allows us to initialize the mechanical oscillator into a stable high-amplitude attractor which would otherwise be inaccessible. To provide context, we begin this work by first presenting an intuitive overview of optomechanical systems and then providing an extended discussion of the principles underlying the design and fabrication of our optomechanical devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the guiding of neutral atoms with two parallel microfabricated current-carrying wires on the atom chip and a vertical magnetic bias field. The atoms are guided along a magnetic field minimum parallel to the current-carrying wires and confined in the other two directions. We describe in detail how the precooled atoms are efficiently loaded into the two-wire guide. We present a detailed experimental study of the motional properties of the atoms in the guide and the relationship between the location of the guide and the vertical bias field. This two-wire guide with vertical bias field can be used to realize large area atom interferometer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The field of cavity optomechanics, which concerns the coupling of a mechanical object's motion to the electromagnetic field of a high finesse cavity, allows for exquisitely sensitive measurements of mechanical motion, from large-scale gravitational wave detection to microscale accelerometers. Moreover, it provides a potential means to control and engineer the state of a macroscopic mechanical object at the quantum level, provided one can realize sufficiently strong interaction strengths relative to the ambient thermal noise. Recent experiments utilizing the optomechanical interaction to cool mechanical resonators to their motional quantum ground state allow for a variety of quantum engineering applications, including preparation of non-classical mechanical states and coherent optical to microwave conversion. Optomechanical crystals (OMCs), in which bandgaps for both optical and mechanical waves can be introduced through patterning of a material, provide one particularly attractive means for realizing strong interactions between high-frequency mechanical resonators and near-infrared light. Beyond the usual paradigm of cavity optomechanics involving isolated single mechanical elements, OMCs can also be fashioned into planar circuits for photons and phonons, and arrays of optomechanical elements can be interconnected via optical and acoustic waveguides. Such coupled OMC arrays have been proposed as a way to realize quantum optomechanical memories, nanomechanical circuits for continuous variable quantum information processing and phononic quantum networks, and as a platform for engineering and studying quantum many-body physics of optomechanical meta-materials.

However, while ground state occupancies (that is, average phonon occupancies less than one) have been achieved in OMC cavities utilizing laser cooling techniques, parasitic absorption and the concomitant degradation of the mechanical quality factor fundamentally limit this approach. On the other hand, the high mechanical frequency of these systems allows for the possibility of using a dilution refrigerator to simultaneously achieve low thermal occupancy and long mechanical coherence time by passively cooling the device to the millikelvin regime. This thesis describes efforts to realize the measurement of OMC cavities inside a dilution refrigerator, including the development of fridge-compatible optical coupling schemes and the characterization of the heating dynamics of the mechanical resonator at sub-kelvin temperatures.

We will begin by summarizing the theoretical framework used to describe cavity optomechanical systems, as well as a handful of the quantum applications envisioned for such devices. Then, we will present background on the design of the nanobeam OMC cavities used for this work, along with details of the design and characterization of tapered fiber couplers for optical coupling inside the fridge. Finally, we will present measurements of the devices at fridge base temperatures of Tf = 10 mK, using both heterodyne spectroscopy and time-resolved sideband photon counting, as well as detailed analysis of the prospects for future quantum applications based on the observed optically-induced heating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I: The dynamic response of an elastic half space to an explosion in a buried spherical cavity is investigated by two methods. The first is implicit, and the final expressions for the displacements at the free surface are given as a series of spherical wave functions whose coefficients are solutions of an infinite set of linear equations. The second method is based on Schwarz's technique to solve boundary value problems, and leads to an iterative solution, starting with the known expression for the point source in a half space as first term. The iterative series is transformed into a system of two integral equations, and into an equivalent set of linear equations. In this way, a dual interpretation of the physical phenomena is achieved. The systems are treated numerically and the Rayleigh wave part of the displacements is given in the frequency domain. Several comparisons with simpler cases are analyzed to show the effect of the cavity radius-depth ratio on the spectra of the displacements.

Part II: A high speed, large capacity, hypocenter location program has been written for an IBM 7094 computer. Important modifications to the standard method of least squares have been incorporated in it. Among them are a new way to obtain the depth of shocks from the normal equations, and the computation of variable travel times for the local shocks in order to account automatically for crustal variations. The multiregional travel times, largely based upon the investigations of the United States Geological Survey, are confronted with actual traverses to test their validity.

It is shown that several crustal phases provide control enough to obtain good solutions in depth for nuclear explosions, though not all the recording stations are in the region where crustal corrections are considered. The use of the European travel times, to locate the French nuclear explosion of May 1962 in the Sahara, proved to be more adequate than previous work.

A simpler program, with manual crustal corrections, is used to process the Kern County series of aftershocks, and a clearer picture of tectonic mechanism of the White Wolf fault is obtained.

Shocks in the California region are processed automatically and statistical frequency-depth and energy depth curves are discussed in relation to the tectonics of the area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

用体布拉格光栅(VBG)作为反馈元件与瓦级半导体激光器(LD)以及快轴准直柱透镜构成一个可以将半导体激光器的工作波长稳定在体布拉格光栅布拉格波长处的外腔激光器。测量了体布拉格光栅外腔激光器的波长稳定性与其工作电流、热汇温度、激光束准直装置等因素的关系。分析了波长稳定效果与半导体激光器增益谱特性、外腔结构参量等因素的关系。研究表明,在相同的工作电流、热汇温度下,当准直柱透镜直径为0.4 mm时的波长稳定效果较好;在此情况下,当热汇温度控制在30 ℃,工作电流从0.5 A增加到1.5 A的测量范围内,以及当工

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vertical zoning of the planktonic Crustacea in a lake is the expression of a complex set of different factors. Besides the measurable, external influences such as light, temperature, acid and C02 stratification, a particularly large part is played by internal factors, which co-ordinate a specific reaction in each species depending on state of development, age and sex. Supporting this extensive, predictable, annual course of diurnal depths and the daily vertical migrations, whose extent is again dependent on external conditions, primarily of course on the amount of light. The individual factors mentioned, however, are here also of great significance. Within the scope of a long-term study of the planktonic Copepoda of Lake Constance, some day and night series were in 1963 also carried out in the Obersee, in order to obtain at least volumetric data on the extent of the daily migrations of these creatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Planktobenthos was sampled in 1957-58 in the river Amur. A determination of the kind of organisms drifting in the mass of water of the Amur was carried out. Of special interest for the authors was the activity of drifting of benthic larvae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

光子晶体光纤的出现,为高功率光纤激光器的关键技术-大模区光纤的实现提供了新途径。基于铒镱共掺磷酸盐材料的包层掺杂新结构出现,为实现更加紧凑的光纤激光器提供了可能。常规高功率光纤激光器中的抽运技术,谐振腔技术和相干组束技术也在不断融入高功率光子晶体光纤激光器。高功率光子晶体光纤激光器的调Q和锁模输出也已经实现。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes applications of cavity enhanced spectroscopy towards applications of remote sensing, chemical kinetics and detection of transient radical molecular species. Both direct absorption spectroscopy and cavity ring-down spectroscopy are used in this work. Frequency-stabilized cavity ring-down spectroscopy (FS-CRDS) was utilized for measurements of spectral lineshapes of O2 and CO2 for obtaining laboratory reference data in support of NASA’s OCO-2 mission. FS-CRDS is highly sensitive (> 10 km absorption path length) and precise (> 10000:1 SNR), making it ideal to study subtle non-Voigt lineshape effects. In addition, these advantages of FS-CRDS were further extended for measuring kinetic isotope effects: A dual-wavelength variation of FS-CRDS was used for measuring precise D/H and 13C/12C methane isotope ratios (sigma>0.026%) for the purpose of measuring the temperature dependent kinetic isotope effects of methane oxidation with O(1D) and OH radicals. Finally, direct absorption spectroscopic detection of the trans-DOCO radical via a frequency combs spectrometer was conducted in collaboration with professor Jun Ye at JILA/University of Colorado.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Goggausee, a small, shallow, meromictic lake(700m long, 150m wide, max. depth=12m, mean depth=6m), was the site of a week long study (19-26 May 1974) of the limnology department of the University of Vienna. The study comprised pollen analysis and palaeolimnological studies on the one hand, as well as a stock- taking of physiochemical factors, primary production, bacteria, zooplankton, zoo benthos and fish on the other. This paper studies the zooplankton of the lake. The Goggausee is a meromictic lake, with its anoxic deep water, that restricts the vertical distribution of most zooplankton. The aim of the study was to pursue the vertical distribution of the rotifers and Crustacea. Density of individuals, biomass, percentages of zooplankton together and crustaceans and rotifers as groups. Special consideration is given to the the Dipteran Chaoborus flavicans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A highly uniform multiwavelength erbium-doped fiber ring laser with an intracavity sine phase modulator is demonstrated. The flat output spectrum is achieved by optimizing the cavity structure, modulation amplitude, and frequency of the sine phase modulator. Fifteen lasing lines with wavelength spacing of 0.9 nm appear simultaneously and stably with power differences less than 2 dB and side-mode suppression ratio higher than 32 dB. In addition, the proposed cavity can support unidirectional operation without optical isolators. An output power difference of about 20 dB is realized between the counterclockwise and clockwise directions, which is almost independent of the pump power and lasing wavelengths. (c) 2005 Society of Photo-Optical Instrumentation Engineers.