971 resultados para ultra-wideband frequency response
Resumo:
This paper reports on a low frequency piezoelectric energy harvester that scavenges energy from a wire carrying an AC current. The harvester is described, fabricated and characterized. The device consists of a silicon cantilever with integrated piezoelectric capacitor and proof-mass that incorporates a permanent magnet. When brought close to an AC current carrying wire, the magnet couples to the AC magnetic field from a wire, causing the cantilever to vibrate and generate power. The measured average power dissipated across an optimal resistive load was 1.5 μW. This was obtained by exciting the device into mechanical resonance using the electro-magnetic field from the 2 A source current. The measurements also reveal that the device has a nonlinear response that is due to a spring hardening mechanism.
Resumo:
The conjugate gradient is the most popular optimization method for solving large systems of linear equations. In a system identification problem, for example, where very large impulse response is involved, it is necessary to apply a particular strategy which diminishes the delay, while improving the convergence time. In this paper we propose a new scheme which combines frequency-domain adaptive filtering with a conjugate gradient technique in order to solve a high order multichannel adaptive filter, while being delayless and guaranteeing a very short convergence time.
Resumo:
Objetivo: Determinar la prevalencia y los factores asociados al consumo de bebidas azucaradas en una población escolar de Bogotá, Colombia, pertenecientes al estudio FUPRECOL. Métodos: Estudio descriptivo y transversal, realizado en 8136 niños y adolescentes en edad escolar entre 9 y 17 años de Bogotá, Colombia. El peso, la estatura, el índice de masa corporal (IMC), la circunferencia de cintura y el porcentaje de grasa, se recogieron como marcadores antropométricos y de composición corporal. El consumo de bebidas azucaradas (bebidas carbonatadas, jugos ultra-procesados y/o Té), y los factores asociados (sexo, edad, obesidad abdominal, clasificación del IMC, grado de estudios de la madre/padre, y nivel nutricional por cuestionario “Krece plus”), se recogieron por encuesta estructurada. Se establecieron asociaciones mediante la construcción de modelos de regresión logística simple. Resultados: De la población general, el 58,4% eran mujeres. En función al sexo, los varones acusaron la mayor ingesta de “bebidas carbonatadas” con una frecuencia semanal y diaria de 70,9% y 21,0%, respectivamente, seguido de “jugos ultra- procesados” (64,4% semanal vs. 11,3% diario). En ambos sexos, la prevalencia de obesidad abdominal fue mayor en los escolares que respondieron consumir diariamente “bebidas carbonatadas” (23,3%), “jugos ultra-procesados” (13,2%) y “bebidas Té” (9,7%). La edad, el grado de educación de los padres y el nivel nutricional, se asociaron como factores predisponentes al consumo diario de “bebidas carbonatadas”. Conclusión: El consumo de bebidas azucaradas cambia por los factores analizados. Se recomiendan intervenciones integrales en las que estén involucrados los componentes nutricional y educativo entre los niños y adolescentes de Bogotá, Colombia.
Resumo:
High Energy efficiency and high performance are the key regiments for Internet of Things (IoT) end-nodes. Exploiting cluster of multiple programmable processors has recently emerged as a suitable solution to address this challenge. However, one of the main bottlenecks for multi-core architectures is the instruction cache. While private caches fall into data replication and wasting area, fully shared caches lack scalability and form a bottleneck for the operating frequency. Hence we propose a hybrid solution where a larger shared cache (L1.5) is shared by multiple cores connected through a low-latency interconnect to small private caches (L1). However, it is still limited by large capacity miss with a small L1. Thus, we propose a sequential prefetch from L1 to L1.5 to improve the performance with little area overhead. Moreover, to cut the critical path for better timing, we optimized the core instruction fetch stage with non-blocking transfer by adopting a 4 x 32-bit ring buffer FIFO and adding a pipeline for the conditional branch. We present a detailed comparison of different instruction cache architectures' performance and energy efficiency recently proposed for Parallel Ultra-Low-Power clusters. On average, when executing a set of real-life IoT applications, our two-level cache improves the performance by up to 20% and loses 7% energy efficiency with respect to the private cache. Compared to a shared cache system, it improves performance by up to 17% and keeps the same energy efficiency. In the end, up to 20% timing (maximum frequency) improvement and software control enable the two-level instruction cache with prefetch adapt to various battery-powered usage cases to balance high performance and energy efficiency.
Resumo:
Power electronic circuits are moving towards higher switching frequencies, exploiting the capabilities of novel devices to shrink the dimension of passive components. This trend demands sensors capable enough to operate at such high frequencies. This thesis aims to demonstrate through experimental characterization, the broadband capability of a fully integrated CMOS X-Hall current sensor in current mode interfaced with a transimpedance amplifier (TIA), chip CH09, realized in CMOS technology for power electronics applications such as power converters. The system exploits a common-mode control system to operate the dual supply system, 5-V for the X-Hall probe and 1.2-V for the readout. The developed prototype achieves a maximum acquisition bandwidth of 12 MHz, a power consumption of 11.46 mW, resolution of 39 mArms, a sensitivity of 8 % /T, and a FoM of 569-MHz/A2mW, significantly higher than current state-of-the-art. Further enhancements were proposed to CH09 as a new chip CH100, aiming for accuracy levels prerequisite for a real-time power electronic application. The TIA was optimized for a wider bandwidth of 26.7 MHz with nearly 30% reduction of the integrated input referred noise of 26.69 nArms at the probe-AFE interface in the frequency band of DC-30 MHz, and a 10% improvement in the dynamic range. The expected input range is 5-A. The chip incorporates a dual sensing chain for differential sensing to overcome common mode interferences. A novel offset cancellation technique is proposed that would require switching of polarity of bias currents. Thermal gain drift was improved by a factor of 8 and will be digitally calibrated utilizing a new built-in temperature sensor with a post calibration measurement accuracy greater than 1%. The estimated power consumption of the entire system is 55.6 mW. Both prototypes have been implemented through a 90-nm microelectronic process from STMicroelectronics and occupy a silicon area of 2.4 mm2.
Resumo:
In this study, we investigated the effect of low density lipoprotein receptor (LDLr) deficiency on gap junctional connexin 36 (Cx36) islet content and on the functional and growth response of pancreatic beta-cells in C57BL/6 mice fed a high-fat (HF) diet. After 60 days on regular or HF diet, the metabolic state and morphometric islet parameters of wild-type (WT) and LDLr-/- mice were assessed. HF diet-fed WT animals became obese and hypercholesterolaemic as well as hyperglycaemic, hyperinsulinaemic, glucose intolerant and insulin resistant, characterizing them as prediabetic. Also they showed a significant decrease in beta-cell secretory response to glucose. Overall, LDLr-/- mice displayed greater susceptibility to HF diet as judged by their marked cholesterolaemia, intolerance to glucose and pronounced decrease in glucose-stimulated insulin secretion. HF diet induced similarly in WT and LDLr-/- mice, a significant decrease in Cx36 beta-cell content as revealed by immunoblotting. Prediabetic WT mice displayed marked increase in beta-cell mass mainly due to beta-cell hypertrophy/replication. Nevertheless, HF diet-fed LDLr-/- mice showed no significant changes in beta-cell mass, but lower islet-duct association (neogenesis) and higher beta-cell apoptosis index were seen as compared to controls. The higher metabolic susceptibility to HF diet of LDLr-/- mice may be explained by a deficiency in insulin secretory response to glucose associated with lack of compensatory beta-cell expansion.
Resumo:
Uncoupling protein one (UCP1) is a mitochondrial inner membrane protein capable of uncoupling the electrochemical gradient from adenosine-5'-triphosphate (ATP) synthesis, dissipating energy as heat. UCP1 plays a central role in nonshivering thermogenesis in the brown adipose tissue (BAT) of hibernating animals and small rodents. A UCP1 ortholog also occurs in plants, and aside from its role in uncoupling respiration from ATP synthesis, thereby wasting energy, it plays a beneficial role in the plant response to several abiotic stresses, possibly by decreasing the production of reactive oxygen species (ROS) and regulating cellular redox homeostasis. However, the molecular mechanisms by which UCP1 is associated with stress tolerance remain unknown. Here, we report that the overexpression of UCP1 increases mitochondrial biogenesis, increases the uncoupled respiration of isolated mitochondria, and decreases cellular ATP concentration. We observed that the overexpression of UCP1 alters mitochondrial bioenergetics and modulates mitochondrial-nuclear communication, inducing the upregulation of hundreds of nuclear- and mitochondrial-encoded mitochondrial proteins. Electron microscopy analysis showed that these metabolic changes were associated with alterations in mitochondrial number, area and morphology. Surprisingly, UCP1 overexpression also induces the upregulation of hundreds of stress-responsive genes, including some involved in the antioxidant defense system, such as superoxide dismutase (SOD), glutathione peroxidase (GPX) and glutathione-S-transferase (GST). As a consequence of the increased UCP1 activity and increased expression of oxidative stress-responsive genes, the UCP1-overexpressing plants showed reduced ROS accumulation. These beneficial metabolic effects may be responsible for the better performance of UCP1-overexpressing lines in low pH, high salt, high osmolarity, low temperature, and oxidative stress conditions. Overexpression of UCP1 in the mitochondrial inner membrane induced increased uncoupling respiration, decreased ROS accumulation under abiotic stresses, and diminished cellular ATP content. These events may have triggered the expression of mitochondrial and stress-responsive genes in a coordinated manner. Because these metabolic alterations did not impair plant growth and development, UCP1 overexpression can potentially be used to create crops better adapted to abiotic stress conditions.
Resumo:
There is great interindividual variability in the response to GH therapy. Ascertaining genetic factors can improve the accuracy of growth response predictions. Suppressor of cytokine signaling (SOCS)-2 is an intracellular negative regulator of GH receptor (GHR) signaling. The objective of the study was to assess the influence of a SOCS2 polymorphism (rs3782415) and its interactive effect with GHR exon 3 and -202 A/C IGFBP3 (rs2854744) polymorphisms on adult height of patients treated with recombinant human GH (rhGH). Genotypes were correlated with adult height data of 65 Turner syndrome (TS) and 47 GH deficiency (GHD) patients treated with rhGH, by multiple linear regressions. Generalized multifactor dimensionality reduction was used to evaluate gene-gene interactions. Baseline clinical data were indistinguishable among patients with different genotypes. Adult height SD scores of patients with at least one SOCS2 single-nucleotide polymorphism rs3782415-C were 0.7 higher than those homozygous for the T allele (P < .001). SOCS2 (P = .003), GHR-exon 3 (P= .016) and -202 A/C IGFBP3 (P = .013) polymorphisms, together with clinical factors accounted for 58% of the variability in adult height and 82% of the total height SD score gain. Patients harboring any two negative genotypes in these three different loci (homozygosity for SOCS2 T allele; the GHR exon 3 full-length allele and/or the -202C-IGFBP3 allele) were more likely to achieve an adult height at the lower quartile (odds ratio of 13.3; 95% confidence interval of 3.2-54.2, P = .0001). The SOCS2 polymorphism (rs3782415) has an influence on the adult height of children with TS and GHD after long-term rhGH therapy. Polymorphisms located in GHR, IGFBP3, and SOCS2 loci have an influence on the growth outcomes of TS and GHD patients treated with rhGH. The use of these genetic markers could identify among rhGH-treated patients those who are genetically predisposed to have less favorable outcomes.
Resumo:
40
Resumo:
69
Presynaptic Neuromuscular Action Of A Methanolic Extract From The Venom Of Rhinella Schneideri Toad.
Resumo:
Rhinella schneideri, previously known as Bufo paracnemis, is a common toad in many regions of Brazil. Its venom exerts important cardiovascular effects on humans and other animals. Although this toad venom has been the subject of intense investigations, little is known about its neuromuscular activity. The neurotoxicity of a methanolic extract of R. schneideri venom was tested on mouse phrenic nerve-diaphragm (PND) preparations mounted for conventional twitch tension recording - in response to indirect stimulation - and for electrophysiological measurements. Venom extract (50 μg/mL) increased the muscle twitch tension in PND preparations but did not significantly alter the resting membrane potential values. Electrophysiological evaluations showed that the extract (50 μg/mL) significantly augmented the frequency of miniature end-plate potential (from 38 ± 3.5 to 88 ± 15 after 60 minutes; n = 5; p < 0.05) and quantal content (from 128 ± 13 to 272 ± 34 after five minutes; n = 5; p < 0.05). Pretreatment with ouabain (1 μg/mL) for five minutes prevented the increase in quantal content (117 ± 18 and 154 ± 33 after five and 60 minutes, respectively). These results indicate that the methanolic extract of R. schneideri venom acts primarily presynaptically to enhance neurotransmitter release in mouse phrenic-diaphragm preparations.
Resumo:
Ki-1/57 (HABP4) and CGI-55 (SERBP1) are regulatory proteins and paralogs with 40.7% amino acid sequence identity and 67.4% similarity. Functionally, they have been implicated in the regulation of gene expression on both the transcriptional and mRNA metabolism levels. A link with tumorigenesis is suggested, since both paralogs show altered expression levels in tumor cells and the Ki-1/57 gene is found in a region of chromosome 9q that represents a haplotype for familiar colon cancer. However, the target genes regulated by Ki-1/57 and CGI-55 are unknown. Here, we analyzed the alterations of the global transcriptome profile after Ki-1/57 or CGI-55 overexpression in HEK293T cells by DNA microchip technology. We were able to identify 363 or 190 down-regulated and 50 or 27 up-regulated genes for Ki-1/57 and CGI-55, respectively, of which 20 were shared between both proteins. Expression levels of selected genes were confirmed by qRT-PCR both after protein overexpression and siRNA knockdown. The majority of the genes with altered expression were associated to proliferation, apoptosis and cell cycle control processes, prompting us to further explore these contexts experimentally. We observed that overexpression of Ki-1/57 or CGI-55 results in reduced cell proliferation, mainly due to a G1 phase arrest, whereas siRNA knockdown of CGI-55 caused an increase in proliferation. In the case of Ki-1/57 overexpression, we found protection from apoptosis after treatment with the ER-stress inducer thapsigargin. Together, our data give important new insights that may help to explain these proteins putative involvement in tumorigenic events.
Resumo:
The over-production of reactive oxygen species (ROS) can cause oxidative damage to a large number of molecules, including DNA, and has been associated with the pathogenesis of several disorders, such as diabetes mellitus (DM), dyslipidemia and periodontitis (PD). We hypothesise that the presence of these diseases could proportionally increase the DNA damage. The aim of this study was to assess the micronucleus frequency (MNF), as a biomarker for DNA damage, in individuals with type 2 DM, dyslipidemia and PD. One hundred and fifty patients were divided into five groups based upon diabetic, dyslipidemic and periodontal status (Group 1 - poor controlled DM with dyslipidemia and PD; Group 2 - well-controlled DM with dyslipidemia and PD; Group 3 - without DM with dyslipidemia and PD; Group 4 - without DM, without dyslipidemia and with PD; and Group 5 - without DM, dyslipidemia and PD). Blood analyses were carried out for fasting plasma glucose, HbA1c and lipid profile. Periodontal examinations were performed, and venous blood was collected and processed for micronucleus (MN) assay. The frequency of micronuclei was evaluated by cell culture cytokinesis-block MN assay. The general characteristics of each group were described by the mean and standard deviation and the data were submitted to the Mann-Whitney, Kruskal-Wallis, Multiple Logistic Regression and Spearman tests. The Groups 1, 2 and 3 were similarly dyslipidemic presenting increased levels of total cholesterol, low density lipoprotein cholesterol and triglycerides. Periodontal tissue destruction and local inflammation were significantly more severe in diabetics, particularly in Group 1. Frequency of bi-nucleated cells with MN and MNF, as well as nucleoplasmic bridges, were significantly higher for poor controlled diabetics with dyslipidemia and PD in comparison with those systemically healthy, even after adjusting for age, and considering Bonferroni's correction. Elevated frequency of micronuclei was found in patients affected by type 2 diabetes, dyslipidemia and PD. This result suggests that these three pathologies occurring simultaneously promote an additional role to produce DNA impairment. In addition, the micronuclei assay was useful as a biomarker for DNA damage in individuals with chronic degenerative diseases.
Resumo:
Hevea brasiliensis is a native species of the Amazon Basin of South America and the primary source of natural rubber worldwide. Due to the occurrence of South American Leaf Blight disease in this area, rubber plantations have been extended to suboptimal regions. Rubber tree breeding is time-consuming and expensive, but molecular markers can serve as a tool for early evaluation, thus reducing time and costs. In this work, we constructed six different cDNA libraries with the aim of developing gene-targeted molecular markers for the rubber tree. A total of 8,263 reads were assembled, generating 5,025 unigenes that were analyzed; 912 expressed sequence tags (ESTs) represented new transcripts, and two sequences were highly up-regulated by cold stress. These unigenes were scanned for microsatellite (SSR) regions and single nucleotide polymorphisms (SNPs). In total, 169 novel EST-SSR markers were developed; 138 loci were polymorphic in the rubber tree, and 98 % presented transferability to six other Hevea species. Locus duplication was observed in H. brasiliensis and other species. Additionally, 43 SNP markers in 13 sequences that showed similarity to proteins involved in stress response, latex biosynthesis and developmental processes were characterized. cDNA libraries are a rich source of SSR and SNP markers and enable the identification of new transcripts. The new markers developed here will be a valuable resource for linkage mapping, QTL identification and other studies in the rubber tree and can also be used to evaluate the genetic variability of other Hevea species, which are valuable assets in rubber tree breeding.
Resumo:
The association between thyroid cancer and thyroid inflammation has been repeatedly reported and highly debated in the literature. In fact, both molecular and epidemiological data suggest that these diseases are closely related and this association reinforces that the immune system is important for thyroid cancer progression. Innate immunity is the first line of defensive response. Unlike innate immune responses, adaptive responses are highly specific to the particular antigen that induced them. Both branches of the immune system may interact in antitumor immune response. Major effector cells of the immune system that directly target thyroid cancer cells include dendritic cells, macrophages, polymorphonuclear leukocytes, mast cells, and lymphocytes. A mixture of immune cells may infiltrate thyroid cancer microenvironment and the balance of protumor and antitumor activity of these cells may be associated with prognosis. Herein, we describe some evidences that immune response may be important for thyroid cancer progression and may help us identify more aggressive tumors, sparing the vast majority of patients from costly unnecessary invasive procedures. The future trend in thyroid cancer is an individualized therapy.