947 resultados para tannin adsorption


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability of differently sized condensed tannins from the genus Leucaena, a fodder tree-legume, to bind protein at different pH values was evaluated to characterise their potential biological effects. Two factors affecting the ability of condensed tannin to bind protein, its major biological activity, have been purported to be the condensed tannin size and the pH of the reaction environment. To test these hypotheses, the protein-precipitating capacities of condensed tannin extracted from four Leucaena genotypes, L leucocephala (UHK636), L pallida (CQ3439), L trichandra (CP146568) and L collinsii (OFI52/88), were assessed. Condensed tannin from L leucocephala had approximately 50% of the ability to precipitate protein on a gg(-1) basis than L pallida or L trichandra, while L collinsii gave no measurable ability to precipitate protein (reaction environment pH 5.0). Increasing or decreasing the pH of the reaction solution away from pH 5.0 (approximately the isoelectric point of the protein) reduced the ability of condensed tannin from all the species to precipitate protein, the decrease being higher at pH 2.5 than at pH 7.5. Condensed tannins from each Leucaena species were also separated by size exclusion chromatography, and the fractions examined for protein-precipitating capacity. In general, it was found that the larger-sized condensed tannin of the accessions L pallida and L trichandra could precipitate more protein than the smaller-sized condensed tannin. This pattern was not found for L leucocephala. (C) 2001 Society of Chemical Industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyphenolics are widely distributed in the plant kingdom and are often present in the diet of herbivores. The two major groups of plant polyphenolic compounds other than lignin are condensed and hydrolysable tannins. These compounds can have toxic and/or antinutritional effects on the animal. It is well established that tannins complex with dietary proteins can reduce nitrogen supply to the animal, but the ability of gastrointestinal microorganisms to metabolise these compounds and their effects on microbial populations have received little attention. In this paper, we review recent literature on the topic as well as present research from our laboratories on the effect of condensed tannins on rumen microbial ecology and rumen metabolism. Interactions of tannins with dietary components and endogenous protein in the rumen and post-ruminally, and their impact on the nutrition of the animal are considered. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon gasification with steam to produce H-2 and CO is an important reaction widely used in industry for hydrogen generation. Although the literature is vast, the. mechanism for the formation of H-2 is still unclear. In particular, little has, been done to investigate the potential of molecular orbital theory to distinguish different mechanism possibilities. In this work, we used molecular orbital theory to demonstrate a favorable energetic pathway where H2O is first physically adsorbed on the virgin graphite surface with negligible change in molecular structure. Chemisorption occurs via O approaching the carbon edge site with one H atom stretching away from the O in the transition state. This is followed by a local minimum. state in which the stretching H is further disconnected from the O atoms and the remaining OH group is still on the carbon edge site. The disconnected H then pivot around the OH group to bond with the H of the OH group and forms H-2. The O atom remaining on the carbon edge site is subsequently desorbed as CO. The reverse occurs when H-2 reacts with the surface oxygen to produce H2O.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural and surface property changes of macadamia nut-shell (MNS) char upon activation and high temperature treatment (HTT) were studied by high-resolution nitrogen adsorption, diffuse reflectance infra-red Fourier transform spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed desorption. It is found that activation of MNS char can be divided into the low extent activation which may involve the reactions of internal oxygen-containing groups and leads to the formation of comparatively uniform micropores, and the high extent activation which induces reactions between carbon and activating gas and produces a large amount of micropores. The surface functional groups (SFGs) basically increase with the increase of activation extent, but high extent activation preferentially increases the amount of -C-O and -C=O. HTT in air for a short tithe at a high temperature (1173 K) greatly increases the micropore volume and the amounts of SFGs. By appropriately choosing the activation and HTT conditions, it is possible to control both the textural structure and the type and amounts of SFG. (C) 2002 Published by Elsevier Science Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 2-m, adiabatic column has been successfully refurbished and recommissioned for coal self-heating research at The University of Queensland. Subbituminous coal from the Callide Coalfields reached thermal runaway in just under 19 days from a starting temperature of 20-22 degreesC. The coal was loaded as two layers, with an R-70 index of 2.73 degreesC h(-1) and 5.90 degreesC h(-1) for the upper layer and lower layer respectively. Initially, a hotspot developed in the upper layer between 120 and 140 cm from the air inlet due to moisture adsorption. After 7 days, self-heating in the lower half of the column began to take over, consistent with the higher R-70 index of this coal. The location of the final hotspot was approximately 60 cm from the air inlet. Further tests on Australian coals, with the column, will enable a better understanding of coal self-heating under conditions closely resembling mining, transport and storage of coal. The results from the column will also provide industry with the information needed to manage the coal self-heating hazard. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The proanthocyanidin (PA) status of 116 accessions from the Leucaena genus representing 21 species, 6 subspecies, 3 varieties and 4 interspecific hybrids was evaluated under uniform environmental and experimental conditions at Redland Bay, Queensland, Australia in October 1997. The PA content of lyophilized youngest fully expanded leaves was measured spectrophotometrically by the butanol/HCl assay referenced to L. leucocephala ssp. glabrata standard PA and expressed as L. leucocephala ssp. glabrata PA equivalents (LLPAE). Considerable interspecific variation in PA concentration existed within the genus, ranging from 0-339 g LLPAE/kg dry matter (DM). Taxa including L. confertiflora, L. cuspidata, L. esculenta and L. greggii contained very high (> 180 g LLPAE/kg DM) PA concentrations. Similarly, many agronomically superior accessions from L. diversifolia, L. pallida and L. trichandra contained extremely high (up to 250 g LLPAE/kg DM) PA concentrations, although these taxa exhibited wide intraspecific variation in PA content offering the potential to select accessions with lower (120-160 g LLPAE/kg DM) PA content. Commercial cultivars of L. leucocephala ssp. glabrata, known to produce forage of superior quality, contained low amounts of PA (33-39 g LLPAE/kg DM). Artificial interspecific hybrids had PA contents intermediate to those of both parents, Lesser-known taxa. including L. collinsii, L. lanceolata, L. lempirana, L. macrophylla, L. magnifica, L. multicapitula, L. salvadorensis and L. trichodes, contained undetectable to low (0-36 g LLPAE/kg DM) quantities of PA and have potential as parents to breed interspecific hybrids of low PA status and superior forage quality. Extractable PA was the dominant PA component, accounting for 91% of total PA within the genus. Regression analysis of accession ranks from different experiments compared to these results indicated that genetic regulation of Leucaena spp. PA content was consistent (P < 0.01) under different edapho-climatic environments. The distribution of PA within the Leucaena genus did not concur with the predictions of various evolutionary and phylogenetic plant defence theories.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermogravimetric analysis has been widely applied in kinetic studies of carbon gasification, with the associated temporal weight change profiles being used to extract kinetic information and to validate gasification models. However the weight change profiles are not always governed by the intrinsic gasification activity because of the effect of chemisorption and its dynamics. In the present work we theoretically determine the criteria under which weight change profiles can be used to determine intrinsic kinetics for CO2 and O2 gasification by examining the region in which the chemisorption dynamics can be assumed pseudo-steady. It is found that the validity of the pseudo-steady assumption depends on the experimental conditions as well as on the initial surface area of carbon. Based on known mechanisms and rate constants an active surface area region is identified within which the steady state assumption is valid and the effect of chemisorption dynamics is negligible. The size of the permissible region is sensitive to the reaction temperature and gas pressure. The results indicate that in some cases the thermogravimetric data should be used with caution in kinetic studies. A large amount of literature on thermogravimetric analyzer determined char gasification kinetics is examined and the importance of chemisorption dynamics for the data assessed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spectral absorption characteristics of the visual pigments in the photoreceptors of the black bream Acanthopagrus butcheri Munro (Sparidae, Teleostei), were measured using microspectrophotometry. A single cohort of fish aged 5-172 days post-hatch (dph), aquarium-reared adults and wild-caught juveniles were investigated. During the larval stage and in juveniles younger than 100 dph, two classes of visual pigment were found, with wavelengths of maximum absorbance (lambda(max)) at approximately 425 nm and 535 nm. Following double cone formation, from 40 dph onwards, the short wavelength-sensitive pigment was recorded in single cones and the longer wavelength-sensitive pigment in double cones. From 100 dph, a gradual shift in the lambda(max) towards longer wavelengths was observed in both cone types. By 160 dph, and in adults, all single cones had a lambda(max) at approximately 475 nm while the lambda(max) in double cones ranged from 545 to 575 nm. The relationships between the lambda(max) and the ratio of bandwidth:lambda(max), for changes in either chromophore or opsin, were modelled mathematically for the long-wavelength-sensitive visual pigments. Comparing our data with the models indicated that changes in lambda(max) were not mediated by a switch from an A(1) to A(2) chromophore, rather a change in opsin expression was most likely. The shifts in the lambda(max) of the visual pigments occur at a stage when the juvenile fish begin feeding in deeper, tannin-stained estuarine waters, which transmit predominantly longer wavelengths, so the spectral sensitivity changes may represent an adaptation by the fish to the changing light environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper the diffusion and flow of carbon tetrachloride, benzene and n-hexane through a commercial activated carbon is studied by a differential permeation method. The range of pressure is covered from very low pressure to a pressure range where significant capillary condensation occurs. Helium as a non-adsorbing gas is used to determine the characteristics of the porous medium. For adsorbing gases and vapors, the motion of adsorbed molecules in small pores gives rise to a sharp increase in permeability at very low pressures. The interplay between a decreasing behavior in permeability due to the saturation of small pores with adsorbed molecules and an increasing behavior due to viscous flow in larger pores with pressure could lead to a minimum in the plot of total permeability versus pressure. This phenomenon is observed for n-hexane at 30degreesC. At relative pressure of 0.1-0.8 where the gaseous viscous flow dominates, the permeability is a linear function of pressure. Since activated carbon has a wide pore size distribution, the mobility mechanism of these adsorbed molecules is different from pore to pore. In very small pores where adsorbate molecules fill the pore the permeability decreases with an increase in pressure, while in intermediate pores the permeability of such transport increases with pressure due to the increasing build-up of layers of adsorbed molecules. For even larger pores, the transport is mostly due to diffusion and flow of free molecules, which gives rise to linear permeability with respect to pressure. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of PACs (primary adsorption centers) in the mesopore (i.e., transport) region of activated carbons during adsorption of polar species, such as water, is unclear. A classical model of three-dimensional adsorption on finite PACs is presented. The model is a preliminary, theoretical investigation into adsorption on mesopore PACs and is intended to give some insight into the energetic and physical processes at work. Work processes are developed to obtain isotherms and three-dimensional sorbate growth on PACs of varying size and energetic characteristics. The work processes allow two forms of adsorbed phase growth: densification at constant boundary and boundary growth at constant density. Relatively strong sorbate-sorbent interactions and strong surface tension favor adsorbed phase densification over boundary growth. Conversely, relatively weak sorbate-sorbent interactions and weak surface tension favor boundary growth over densification. If sorbate-sorbate interactions are strong compared to sorbate-sorbent interactions, condensation with hysteresis occurs. This can also give rise to delayed boundary growth, where all initial adsorption occurs in the monolayer only. The results indicate that adsorbed phase growth on PACs may be quite complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface diffusion of strongly adsorbing hydrocarbon vapours on activated carbon was measured by using a constant molar flow method (D.D. Do, Dynamics of a semi-batch adsorber with constant molar supply rate: a method for studying adsorption rate of pure gas, Chem. Eng. Sci. 50 (1995) 549), where pure adsorbate is introduced into a semi-batch adsorber at a constant molar flow rate. The surface diffusivity was determined from the analysis of pressure response versus time, using a linear mathematical model developed earlier. To apply the linear theory over the non-linear range of the adsorption isotherm, we implement a differential increment method on the system which is initially equilibrated with some pre-determined loading. By conducting the experiments at different initial loadings, the surface diffusivity can be extracted as a function of loading. Propane, n-butane, n-hexane, benzene, and ethanol were used as diffusing adsorbate on a commercial activated carbon. It is found that the surface diffusivity of these strongly adsorbing vapours increases rapidly with loading, and the surface diffusion flux contributes significantly to the total flux and cannot be ignored. The surface diffusivity increases with temperature according to the Arrhenius law, and for the paraffins tested it decreases with the molecular weight of the adsorbate. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A comparative study of carbon gasification with O-2 and CO2 was conducted by using density functional theory calculations. It was found that the activation energy and the number of active sites in carbon gasification reactions are significantly affected by both the capacity and manner of gas chemisorption. O-2 has a strong adsorption capacity and the dissociative chemisorption of O-2 is thermodynamically favorable on either bare carbon surface or even isolated edge sites. As a result, a large number of semiquinone and o-quinone oxygen can be formed indicating a significant increase in the number of active sites. Moreover, the weaker o-quinone C-C bonds can also drive the reaction forward at (ca. 30%) lower activation energy. Epoxy oxygen forms under relatively high O-2 pressure, and it can only increase the number of active sites, not further reduce the activation energy. CO2 has a lower adsorption capacity. Dissociative chemisorption of CO2 can only occur on two consecutive edge sites and o-quinone oxygen formed from CO2 chemisorption is negligible, let alone epoxy oxygen. Therefore, CO2-carbon reaction needs (ca 30%) higher activation energy. Furthermore, the effective active sites are also reduced by the manner Of CO2 chemisorption. A combination of the higher activation energy and the fewer active sites leads to the much lower reaction rate Of CO2-carbon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pore structure formation in bentonite, pillared with a mixed sol of silicon and titanium hydroxides and treated subsequently with quaternary ammonium surfactants, is investigated. The surfactant micelles act as a template, similar to their role in MCM41 synthesis. Because both the surfactant micelles and the sol particles are positively charged, it is greatly favorable for them to form meso-phase assembles in the galleries between the clay layers that bear negative charges. Besides, the sol particles do not bond the clay layers strongly as other kinds of pillar precursors do, so that the treatment with surfactants can result in radical structure changes in sol-pillared clays. This allows us to tailor the pore structure of these porous clays by choice of surfactant. The surfactant treatment also results in profound increases in porosity and improvement in thermal stability. Therefore, the product porous clays have great potential to be Used to deal with large molecules or at high operating temperatures. We also found that titanium in these samples is highly dispersed in the silica matrix rather than existing in the form of small particles of pure titania. Such highly dispersed Ti active centers may offer excellent activities for catalytic oxidation reactions such as alkanes into alcohols and ketones.