978 resultados para reaction of nitrosation
Resumo:
A novel and highly sensitive sensing strategy for the detection of organophosphorus compounds (OPs) based on the catalytic reaction of acetylcholinesterase (AChE) and acetylcholine (ATCh) during the modulated synthesis of silver nanoparticles (AgNPs) has been developed. The enzymatic hydrolysis of ATCh by AChE yields thiocholine (TCh), which induces the aggregation of AgNPs during synthesis, and the absorption peak at 382 nm corresponding to AgNPs decreases. The enzymatic reaction can be regulated by OPs, which can covalently bind to the active site of AChE and decrease the TCh formation, thereby decreasing the aggregation and significantly enhancing the absorption peak at 382 nm. The proposed system achieved good linearity and limits of detection of 0.078 nM and 2.402 nM for trichlorfon and malathion, respectively, by UV-visible spectroscopy. Further, the sensitivity of the proposed system was demonstrated through the determination of OPs in different spiked real samples. The described work shows the potential application for further development of a colorimetric sensor for other OP pesticide detection during the synthesis of AgNPs using enzyme-based assays.
Resumo:
A new spectrophotometric method for the determination of molybdenum in industrial materials has been developed using the leaf extract of Syzygium jambolanum DC based on the reaction of Mo (VI) at pH 7.0 to produce an orange-yellow complex with an absorption maximum at 426 nm. The molar absorptivity of the complex is 4.27 x 10(4) l mol(-1) cm(-1) and the absorbance, is linear in the range 0.05-0.8 ppm. Sandell sensitivity coefficient was found to be 2.25 x 10(-3) mu g/cm(2). The method is ten times more sensitive than the aqueous thiocyanate system. It has been applied successfully in micronutrient fertilizer, artificial freshwater and sea-water analyses.
Resumo:
Two dinuclear copper(II) complexes Li(H2O)(3)(CH3OH)](4)Cu2Br4]Cu-2(cpdp)(mu-O2CCH3)](4)(OH)(2) (1), Cu (H2O)(4)]Cu-2(cpdp)(mu-O2CC6H5)](2)Cl-2 center dot 5H(2)O (2), and a dinuclear zinc(II) complex Zn-2(cpdp)(mu-O2CCH3)] (3) have been synthesized using pyridine and benzoate functionality based new symmetrical dinucleating ligand, N, N'-Bis2-carboxybenzomethyl]-N, N'-Bis2-pyridylmethyl]-1,3-diaminopropan-2-ol (H(3)cpdp). Complexes 1, 2 and 3 have been synthesized by carrying out reaction of the ligand H3cpdp with stoichiometric amounts of Cu-2(O2CCH3)(4)(H2O)(2)], CuCl2 center dot 2H(2)O/C6H5COONa, and Zn(CH3COO)(2)center dot 2H(2)O, respectively, in methanol in the presence of NaOH at ambient temperature. Characterizations of the complexes have been done using various analytical techniques including single crystal X-ray structure determination. The X-ray crystal structure analyses reveal that the copper(II) ions in complexes 1 and 2 are in a distorted square pyramidal geometry with Cu-Cu separation of 3.455(8) angstrom and 3.492(1)angstrom, respectively. The DFT optimized structure of complex 3 indicates that two zinc(II) ions are in a distorted square pyramidal geometry with Zn-Zn separation of 3.492(8)angstrom. UV-Vis and mass spectrometric analyses of the complexes confirm their dimeric nature in solution. Furthermore, H-1 and C-13 NMR spectroscopic investigations authenticate the integrity of complex 3 in solution. Variable-temperature (2-300 K) magnetic susceptibility measurements show the presence of antiferromagnetic interactions between the copper centers, with J = -26.0 cm(-1) and -23.9 cm(-1) ((H) over cap = -2JS(1)S(2)) in complexes 1 and 2, respectively. In addition, glycosidase-like activity of the complexes has been investigated in aqueous solution at pH similar to 10.5 by UV-Vis spectrophotometric technique using p-nitrophenyl-alpha-D-glucopyranoside (4) and p-nitrophenyl-beta-D-glucopyranoside (5) as model substrates. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Changes in the protonation and deprotonation of amino acid residues in proteins play a key role in many biological processes and pathways. Here, we report calculations of the free-energy profile for the protonation deprotonation reaction of the 20 canonical alpha amino acids in aqueous solutions using ab initio Car-Parrinello molecular dynamics simulations coupled with metad-ynamics sampling. We show here that the calculated change in free energy of the dissociation reaction provides estimates of the multiple pK(a) values of the amino acids that are in good agreement with experiment. We use the bond-length-dependent number of the protons coordinated to the hydroxyl oxygen of the carboxylic and the amine groups as the collective variables to explore the free-energy profiles of the Bronsted acid-base chemistry of amino acids in aqueous solutions. We ensure that the amino acid undergoing dissociation is solvated by at least three hydrations shells with all water molecules included in the simulations. The method works equally well for amino acids with neutral, acidic and basic side chains and provides estimates of the multiple pK(a) values with a mean relative error, with respect to experimental results, of 0.2 pK(a) units.
Resumo:
The magnetic field in rapidly rotating dynamos is spatially inhomogeneous. The axial variation of the magnetic field is of particular importance because tall columnar vortices aligned with the rotation axis form at the onset of convection. The classical picture of magnetoconvection with constant or axially varying magnetic fields is that the Rayleigh number and wavenumber at onset decrease appreciably from their non-magnetic values. Nonlinear dynamo simulations show that the axial lengthscale of the self-generated azimuthal magnetic field becomes progressively smaller as we move towards a rapidly rotating regime. With a small-scale field, however, the magnetic control of convection is different from that in previous studies with a uniform or large-scale field. This study looks at the competing viscous and magnetic mode instabilities when the Ekman number E (ratio of viscous to Coriolis forces) is small. As the applied magnetic field strength (measured by the Elsasser number Lambda) increases, the critical Rayleigh number for onset of convection initially increases in a viscous branch, reaches an apex where both viscous and magnetic instabilities co-exist, and then falls in the magnetic branch. The magnetic mode of onset is notable for its dramatic suppression of convection in the bulk of the fluid layer where the field is weak. The viscous-magnetic mode transition occurs at Lambda similar to 1, which implies that small-scale convection can exist at field strengths higher than previously thought. In spherical shell dynamos with basal heating, convection near the tangent cylinder is likely to be in the magnetic mode. The wavenumber of convection is only slightly reduced by the self-generated magnetic field at Lambda similar to 1, in agreement with previous planetary dynamo models. The back reaction of the magnetic field on the flow is, however, visible in the difference in kinetic helicity between cyclonic and anticyclonic vortices.
Resumo:
The reaction of Ru(eta(6)-cymene)Cl-2](2) and PPh2Cl in the ratio 1:2 gives a stable Ru(h(6)-cymene) Cl-2(PPh2Cl)] complex. Attempts to make the cationic Ru(eta(6)-cymene)Cl(PPh2Cl)(2)]Cl with excess PPh2Cl and higher temperatures led to adventitious hydrolysis and formation of Ru(eta(6)-cymene)Cl-2(PPh2OH)]. Attempts to make a phosphinite complex by reacting Ru(eta(6)-cymene)Cl-2](2) with PPh2Cl in the presence of an alcohol results in the reduction of PPh2Cl to give Ru(eta(6)-cymene)Cl-2(PPh2H)] and the expected phosphinite. The yield of the hydride complex is highest when the alcohol is 1-phenyl-ethane-1,2-diol. All three half-sandwich complexes are characterized by X-ray crystallography. Surprisingly, the conversion of chlorodiphenylphosphine to diphenylphosphine is mediated by 1-phenyl-ethane-1,2-diol even in the absence of the ruthenium half-sandwich precursor.
Resumo:
The tripeptide glutathione (GSH) is one of the most abundant peptides and the major repository for nonprotein sulfur in both animal and plant cells. It plays a critical role in intracellular oxidative stress management by the reversible formation of glutathione disulfide with the thiol-disulfide pair acting as a redox buffer. The state of charge of the ionizable groups of GSH can influence the redox couple, and hence the pK(a) value of the cysteine residue of GSH is critical to its functioning. Here we report ab initio Car-Parrinello molecular dynamics simulations of glutathione solvated by 200 water molecules, all of which are considered in the simulation. We show that the free-energy landscape for the protonation-deprotonation reaction of the cysteine residue of GSH computed using metadynamics sampling provides shift in the dissociation constant values as compared with the isolated accurate estimates of the pK(a) and correctly predicts the cysteine amino acid.
Resumo:
Zn1-xMgxO ( <= x <= 0.1) ceramics were fabricated by conventional solid-state reaction of co-precipitated zinc oxide and magnesium hydroxide nanoparticles. Structural and morphological properties of the fabricated ceramics were studied using X-ray diffraction and scanning electron microscopic analysis. The dielectric measurements of the ceramics were carried out as a function of frequency and temperature respectively. Interestingly, Mg doped ZnO (MZO) samples exhibited colossal dielectric response (similar to 1 x 10(4) at 1 kHz) with Debye like relaxation. The detailed dielectric studies and thermal analyses showed that the unusual dielectric response of the samples were originated from the defected grain and grain boundary (GB) conductivity relaxations due to the absorbed atmospheric water vapor (moisture). Impedance spectroscopy was employed to determine the defected grain and GB resistances, capacitances and which supported Maxwell-Wagner type relaxation phenomena. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Spirodiazaselenuranes are structurally interesting compounds and the stability of these compounds depends highly on the nature of the substituents attached to the nitrogen atoms. Aromatic substituents are known to play important roles in stabilizing the Se-N bonds in spiro compounds. In this study, several spirodiazaselenuranes are synthesized by introducing benzylic and aliphatic substituents to understand their effect on the stability of the Se-N bonds and the antioxidant activity. Replacement of phenyl substituent by benzyl/alkyl groups significantly reduces the stability of the spirodiazaselenuranes and slows down the oxidative cyclization process. The selenium centre in the spiro compounds undergoes further oxidation to produce the corresponding selenurane oxides, which are stable at room temperature. Comparison of the glutathione peroxidase (GPx) mimetic activity of the compounds showed that the diaryl selenides having heterocyclic rings are significantly more active due to the facile oxidation of the selenium centre. However, the activity is reduced significantly for compounds having aliphatic substituents. In addition to GPx activity, the compounds also inhibit peroxynitrite-mediated nitration and oxidation reaction of protein and small molecules, respectively. The experimental observations suggest that the antioxidant activity is increased considerably upon substitution of the aromatic group with the benzylic/aliphatic substituents on the nitrogen atoms.
Resumo:
This report describes a new method for measuring the temperature of the gas behind the reflected shock wave in shock tube, corresponding to the reservoir temperature of a shock tunnel, based on the chemical reaction of small amount of CF4 premixed in the test gas. The final product C2F4 is used as the temperature indicator, which is sampled and detected by a gas chromatography in the experiment. The detected concentration of C2F4 is correlated to the temperature of the reflected shock wave with the initial pressure P-1 and test time tau as parameters in the temperature range 3 300 K < T < 5 600 K, pressure range 5 kPa < P1 <12 kPa and tau similar or equal to 0.4 ms.
Resumo:
Chemical control of surface functionality and topography is an essential requirement for many technological purposes. In particular, the covalent attachment of monomeric proteins to surfaces has been the object of intense studies in recent years, for applications as varied as electrochemistry, immuno-sensing, and the production of biocompatible coatings. Little is known, however, about the characteristics and requirements underlying surface attachment of supramolecular protein nanostructures. Amyloid fibrils formed by the self-assembly of peptide and protein molecules represent one important class of such structures. These highly organized beta-sheet-rich assemblies are a hallmark of a range of neurodegenerative disorders, including Alzheimer's disease and type II diabetes, but recent findings suggest that they have much broader significance, potentially representing the global free energy minima of the energy landscapes of proteins and having potential applications in material science. In this paper, we describe strategies for attaching amyloid fibrils formed from different proteins to gold surfaces under different solution conditions. Our methods involve the reaction of sulfur containing small molecules (cystamine and 2-iminothiolane) with the amyloid fibrils, enabling their covalent linkage to gold surfaces. We demonstrate that irreversible attachment using these approaches makes possible quantitative analysis of experiments using biosensor techniques, such as quartz crystal microbalance (QCM) assays that are revolutionizing our understanding of the mechanisms of amyloid growth and the factors that determine its kinetic behavior. Moreover, our results shed light on the nature and relative importance of covalent versus noncovalent forces acting on protein superstructures at metal surfaces.
Resumo:
Chemical-looping combustion (CLC) has the inherent property of separating CO2 from flue gases. Instead of air, it uses an oxygen-carrier, usually in the form of a metal oxide, to provide oxygen for combustion. When used for the combustion of gaseous fuels, such as natural gas, or synthesis gas from the gasification of coal, the technique gives a stream of CO2 which, on an industrial scale, would be sufficiently pure for geological sequestration. An important issue is the form of the metal oxide, since it must retain its reactivity through many cycles of complete reduction and oxidation. Here, we report on the rates of oxidation of one constituent of synthesis gas, H2, by co-precipitated mixtures of CuO+Al2O3 using a laboratory-scale fluidised bed. To minimise the influence of external mass transfer, and also of errors in the measurement of [H2], particles sized to 355-500μm were used at low [H2], with the temperature ranging from 450 to 900°C. Under such conditions, the reaction was slow enough for meaningful measurements of the intrinsic kinetics to be made. The reaction was found to be first order with respect to H2. Above ∼800°C, the reaction of CuO was fast and conformed to the shrinking core mechanism, proceeding via the intermediate, Cu2O, in: 2CuO+H2→Cu2O+H2O, ΔH1073 K0=- 116.8 kJ/mol; Cu2O+H2→2Cu+H2O, ΔH1073 K0-80.9 kJ/mol. After oxidation of the products Cu and Cu2O back to CuO, the kinetics in subsequent cycles of chemical looping oxidation of H2 could be approximated by those in the first. Interestingly, the carrier was found to react at temperatures as low as 300°C. The influence of the number of cycles of reduction and oxidation is explored. Comparisons are drawn with previous work using reduction by CO. Finally, these results indicate that the kinetics of reaction of the oxygen carrier with gasifier synthesis gases is very much faster than rates of gasification of the original fuel. © 2010 The Institution of Chemical Engineers.
Resumo:
The present paper describes a numerical two-way coupling model for shock-induced laminar boundary-layer flows of a dust-laden gas and studies the transverse migration of fine particles under the action of Saffman lift force. The governing equations are formulated in the dilute two-phase continuum framework with consideration of the finiteness of the particle Reynolds and Knudsen numbers. The full Lagrangian method is explored for calculating the dispersed-phase flow fields (including the number density of particles) in the regions of intersecting particle trajectories. The computation results show a significant reaction of the particles on the two-phase boundary-layer structure when the mass loading ratio of particles takes finite values.
Resumo:
Issue in Honor of Prof. Paweł Kafarski
Resumo:
ENGLISH: From morphometric data, tagging results and reaction of the stock to fishing, it is inferred that the yellowfin tuna of the Eastern Pacific form a distinct population which intermingles little, if at all, with populations to the westward. Excellent statistics of catch and effort, and records of total catch, available since 1934, during rapid growth of the fishery, have made possible application of a generalized mathematical predator-prey model to estimate the effect of fishing on the population, and the average abundance and yield corresponding to different amounts of fishing effort, and also to estimate the rate of fishing mortality per unit of effort. From serial samples of size composition of catches, and from tagging experiments, it has been possible to determine rates of growth and of total mortality. These kinds of information permit application of the catch-per-recruit model of Beverton and Holt. Combination of the results of application of the Beverton and Holt model and of the generalized predator-prey model, leads to inference of the relationship between stock size and recruitment. The form of the relationship is remarkably similar to the theoretical model developed by W. E. Ricker. These studies, based on the data of the near-surface fishery by baitboats and purse seiners, indicate clearly that the increased intensity of fishing has caused diminution of the stocks to the point where they are somewhat "overfished"-that is, incapable of supporting the maximum sustainable average harvest. SPANISH: De los datos morfométricos, de los resultados de las marcaciones y de la reacción del stock a la pesca, se infiere que el atún aleta amarilla del Pacífico oriental forma una población diferente que se mezcla poco, si es que llega a mezclarse, con las poblaciones del oeste. Las excelentes estadísticas de la captura y el esfuerzo y los registros de la pesca global disponibles desde 1934, durante el rápido crecimiento de la pesquería, han hecho posible la aplicación de un modelo matemático generalizado depredador-presa para estimar el efecto de la pesca en la población y el promedio de la abundancia y del rendimiento correspondientes a los diferentes valores del esfuerzo de pesca, y también para estimar la tasa de la mortalidad de pesca por unidad de esfuerzo. Gracias a las muestras en serie de la composición de tamaños de las capturas y a los experimentos de marcación, ha sido posible determinar las tasas del crecimiento y de la mortalidad total. Estos tipos de información permiten la aplicación del modelo de la captura-porrecluta de Beverton y Holt. La combinación de los resultados de la aplicación del modelo de Beverton y Holt y del modelo generalizado depredador-presa, conduce a la inferencia de la relación entre el tamaño del stock y el reclutamiento. La forma de la relación es notoriamente similar al modelo teórico desarrollado por W. E. Ricker. Estos estudios, basados en los datos de la pesquería cerca de la superficie efectuada por barcos de carnada y rederos, indican claramente que el aumento de la intensidad de la pesca ha causado la disminución de los stocks hasta el punto de dejarlos algo "superexplotados", o sea, incapacitados para mantener una producción máxima promedio. (PDF contains 50 pages.)