921 resultados para random coefficient regression model
Resumo:
Airborne lidar provides accurate height information of objects on the earth and has been recognized as a reliable and accurate surveying tool in many applications. In particular, lidar data offer vital and significant features for urban land-cover classification, which is an important task in urban land-use studies. In this article, we present an effective approach in which lidar data fused with its co-registered images (i.e. aerial colour images containing red, green and blue (RGB) bands and near-infrared (NIR) images) and other derived features are used effectively for accurate urban land-cover classification. The proposed approach begins with an initial classification performed by the Dempster–Shafer theory of evidence with a specifically designed basic probability assignment function. It outputs two results, i.e. the initial classification and pseudo-training samples, which are selected automatically according to the combined probability masses. Second, a support vector machine (SVM)-based probability estimator is adopted to compute the class conditional probability (CCP) for each pixel from the pseudo-training samples. Finally, a Markov random field (MRF) model is established to combine spatial contextual information into the classification. In this stage, the initial classification result and the CCP are exploited. An efficient belief propagation (EBP) algorithm is developed to search for the global minimum-energy solution for the maximum a posteriori (MAP)-MRF framework in which three techniques are developed to speed up the standard belief propagation (BP) algorithm. Lidar and its co-registered data acquired by Toposys Falcon II are used in performance tests. The experimental results prove that fusing the height data and optical images is particularly suited for urban land-cover classification. There is no training sample needed in the proposed approach, and the computational cost is relatively low. An average classification accuracy of 93.63% is achieved.
Resumo:
A continuous tropospheric and stratospheric vertically resolved ozone time series, from 1850 to 2099, has been generated to be used as forcing in global climate models that do not include interactive chemistry. A multiple linear regression analysis of SAGE I+II satellite observations and polar ozonesonde measurements is used for the stratospheric zonal mean dataset during the well-observed period from 1979 to 2009. In addition to terms describing the mean annual cycle, the regression includes terms representing equivalent effective stratospheric chlorine (EESC) and the 11-yr solar cycle variability. The EESC regression fit coefficients, together with pre-1979 EESC values, are used to extrapolate the stratospheric ozone time series backward to 1850. While a similar procedure could be used to extrapolate into the future, coupled chemistry climate model (CCM) simulations indicate that future stratospheric ozone abundances are likely to be significantly affected by climate change, and capturing such effects through a regression model approach is not feasible. Therefore, the stratospheric ozone dataset is extended into the future (merged in 2009) with multimodel mean projections from 13 CCMs that performed a simulation until 2099 under the SRES (Special Report on Emission Scenarios) A1B greenhouse gas scenario and the A1 adjusted halogen scenario in the second round of the Chemistry-Climate Model Validation (CCMVal-2) Activity. The stratospheric zonal mean ozone time series is merged with a three-dimensional tropospheric data set extracted from simulations of the past by two CCMs (CAM3.5 and GISSPUCCINI)and of the future by one CCM (CAM3.5). The future tropospheric ozone time series continues the historical CAM3.5 simulation until 2099 following the four different Representative Concentration Pathways (RCPs). Generally good agreement is found between the historical segment of the ozone database and satellite observations, although it should be noted that total column ozone is overestimated in the southern polar latitudes during spring and tropospheric column ozone is slightly underestimated. Vertical profiles of tropospheric ozone are broadly consistent with ozonesondes and in-situ measurements, with some deviations in regions of biomass burning. The tropospheric ozone radiative forcing (RF) from the 1850s to the 2000s is 0.23Wm−2, lower than previous results. The lower value is mainly due to (i) a smaller increase in biomass burning emissions; (ii) a larger influence of stratospheric ozone depletion on upper tropospheric ozone at high southern latitudes; and possibly (iii) a larger influence of clouds (which act to reduce the net forcing) compared to previous radiative forcing calculations. Over the same period, decreases in stratospheric ozone, mainly at high latitudes, produce a RF of −0.08Wm−2, which is more negative than the central Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) value of −0.05Wm−2, but which is within the stated range of −0.15 to +0.05Wm−2. The more negative value is explained by the fact that the regression model simulates significant ozone depletion prior to 1979, in line with the increase in EESC and as confirmed by CCMs, while the AR4 assumed no change in stratospheric RF prior to 1979. A negative RF of similar magnitude persists into the future, although its location shifts from high latitudes to the tropics. This shift is due to increases in polar stratospheric ozone, but decreases in tropical lower stratospheric ozone, related to a strengthening of the Brewer-Dobson circulation, particularly through the latter half of the 21st century. Differences in trends in tropospheric ozone among the four RCPs are mainly driven by different methane concentrations, resulting in a range of tropospheric ozone RFs between 0.4 and 0.1Wm−2 by 2100. The ozone dataset described here has been released for the Coupled Model Intercomparison Project (CMIP5) model simulations in netCDF Climate and Forecast (CF) Metadata Convention at the PCMDI website (http://cmip-pcmdi.llnl.gov/).
Resumo:
We examine mid- to late Holocene centennial-scale climate variability in Ireland using proxy data from peatlands, lakes and a speleothem. A high degree of between-record variability is apparent in the proxy data and significant chronological uncertainties are present. However, tephra layers provide a robust tool for correlation and improve the chronological precision of the records. Although we can find no statistically significant coherence in the dataset as a whole, a selection of high-quality peatland water table reconstructions co-vary more than would be expected by chance alone. A locally weighted regression model with bootstrapping can be used to construct a ‘best-estimate’ palaeoclimatic reconstruction from these datasets. Visual comparison and cross-wavelet analysis of peatland water table compilations from Ireland and Northern Britain show that there are some periods of coherence between these records. Some terrestrial palaeoclimatic changes in Ireland appear to coincide with changes in the North Atlantic thermohaline circulation and solar activity. However, these relationships are inconsistent and may be obscured by chronological uncertainties. We conclude by suggesting an agenda for future Holocene climate research in Ireland.
Resumo:
This paper aims to understand the physical processes causing the large spread in the storm track projections of the CMIP5 climate models. In particular, the relationship between the climate change responses of the storm tracks, as measured by the 2–6 day mean sea level pressure variance, and the equator-to-pole temperature differences at upper- and lower-tropospheric levels is investigated. In the southern hemisphere the responses of the upper- and lower-tropospheric temperature differences are correlated across the models and as a result they share similar associations with the storm track responses. There are large regions in which the storm track responses are correlated with the temperature difference responses, and a simple linear regression model based on the temperature differences at either level captures the spatial pattern of the mean storm track response as well explaining between 30 and 60 % of the inter-model variance of the storm track responses. In the northern hemisphere the responses of the two temperature differences are not significantly correlated and their associations with the storm track responses are more complicated. In summer, the responses of the lower-tropospheric temperature differences dominate the inter-model spread of the storm track responses. In winter, the responses of the upper- and lower-temperature differences both play a role. The results suggest that there is potential to reduce the spread in storm track responses by constraining the relative magnitudes of the warming in the tropical and polar regions.
Resumo:
We analysed single nucleotide polymorphisms (SNPs) tagging the genetic variability of six candidate genes (ATF6, FABP1, LPIN2, LPIN3, MLXIPL and MTTP) involved in the regulation of hepatic lipid metabolism, an important regulatory site of energy balance for associations with body mass index (BMI) and changes in weight and waist circumference. We also investigated effect modification by sex and dietary intake. Data of 6,287 individuals participating in the European prospective investigation into cancer and nutrition were included in the analyses. Data on weight and waist circumference were followed up for 6.9 ± 2.5 years. Association of 69 tagSNPs with baseline BMI and annual changes in weight as well as waist circumference were investigated using linear regression analysis. Interactions with sex, GI and intake of carbohydrates, fat as well as saturated, monounsaturated and polyunsaturated fatty acids were examined by including multiplicative SNP-covariate terms into the regression model. Neither baseline BMI nor annual weight or waist circumference changes were significantly associated with variation in the selected genes in the entire study population after correction for multiple testing. One SNP (rs1164) in LPIN2 appeared to be significantly interacting with sex (p = 0.0003) and was associated with greater annual weight gain in men (56.8 ± 23.7 g/year per allele, p = 0.02) than in women (-25.5 ± 19.8 g/year per allele, p = 0.2). With respect to gene-nutrient interaction, we could not detect any significant interactions when accounting for multiple testing. Therefore, out of our six candidate genes, LPIN2 may be considered as a candidate for further studies.
Resumo:
A one-dimensional surface energy-balance lake model, coupled to a thermodynamic model of lake ice, is used to simulate variations in the temperature of and evaporation from three Estonian lakes: Karujärv, Viljandi and Kirjaku. The model is driven by daily climate data, derived by cubic-spline interpolation from monthly mean data, and was run for periods of 8 years (Kirjaku) up to 30 years (Viljandi). Simulated surface water temperature is in good agreement with observations: mean differences between simulated and observed temperatures are from −0.8°C to +0.1°C. The simulated duration of snow and ice cover is comparable with observed. However, the model generally underpredicts ice thickness and overpredicts snow depth. Sensitivity analyses suggest that the model results are robust across a wide range (0.1–2.0 m−1) of lake extinction coefficient: surface temperature differs by less than 0.5°C between extreme values of the extinction coefficient. The model results are more sensitive to snow and ice albedos. However, changing the snow (0.2–0.9) and ice (0.15–0.55) albedos within realistic ranges does not improve the simulations of snow depth and ice thickness. The underestimation of ice thickness is correlated with the overestimation of snow cover, since a thick snow layer insulates the ice and limits ice formation. The overestimation of snow cover results from the assumption that all the simulated winter precipitation occurs as snow, a direct consequence of using daily climate data derived by interpolation from mean monthly data.
Resumo:
BACKGROUND: Using continuing professional development (CPD) as part of the revalidation of pharmacy professionals has been proposed in the UK but not implemented. We developed a CPD Outcomes Framework (‘the framework’) for scoring CPD records, where the score range was -100 to +150 based on demonstrable relevance and impact of the CPD on practice. OBJECTIVE: This exploratory study aimed to test the outcome of training people to use the framework, through distance-learning material (active intervention), by comparing CPD scores before and after training. SETTING: Pharmacy professionals were recruited in the UK in Reading, Banbury, Southampton, Kingston-upon-Thames and Guildford in 2009. METHOD: We conducted a randomised, double-blinded, parallel-group, before and after study. The control group simply received information on new CPD requirements through the post; the active intervention group also received the framework and associated training. Altogether 48 participants (25 control, 23 active) completed the study. All participants submitted CPD records to the research team before and after receiving the posted resources. The records (n=226) were scored blindly by the researchers using the framework. A subgroup of CPD records (n=96) submitted first (before-stage) and rewritten (after-stage) were analysed separately. MAIN OUTCOME MEASURE: Scores for CPD records received before and after distributing group-dependent material through the post. RESULTS: Using a linear-regression model both analyses found an increase in CPD scores in favour of the active intervention group. For the complete set of records, the effect was a mean difference of 9.9 (95% CI = 0.4 to 19.3), p-value = 0.04. For the subgroup of rewritten records, the effect was a mean difference of 17.3 (95% CI = 5.6 to 28.9), p-value = 0.0048. CONCLUSION: The intervention improved participants’ CPD behaviour. Training pharmacy professionals to use the framework resulted in better CPD activities and CPD records, potentially helpful for revalidation of pharmacy professionals. IMPACT: • Using a bespoke Continuing Professional Development outcomes framework improves the value of pharmacy professionals’ CPD activities and CPD records, with the potential to improve patient care. • The CPD outcomes framework could be helpful to pharmacy professionals internationally who want to improve the quality of their CPD activities and CPD records. • Regulators and officials across Europe and beyond can assess the suitability of the CPD outcomes framework for use in pharmacy CPD and revalidation in their own setting.
Resumo:
Adolescence is a unique period in human development encompassing sexual maturation (puberty) and the physical and psychological transition into adulthood. It is a crucial time for healthy development and any adverse environmental conditions, poor nutrition, or chronic infection can alter the timing of these physical changes; delaying menarche in girls or the age of peak height velocity in boys. This study explores the impact of chronic illness on the tempo of puberty in 607 adolescent skeletons from medieval England (AD 900-1550). A total of 135 (22.2%) adolescents showed some delay in their pubertal development, and this lag increased with age. Of those with a chronic condition, 40.0% (n=24/60) showed delay compared to only 20.3% (n=111/547) of the non-pathology group. This difference was statistically significant. A binary logistic regression model demonstrated a significant association between increasing delay in pubertal stage attainment with age in the pathology group. This is the first time that chronic conditions have been directly associated with a delay in maturation in the osteological record, using a new method to assess stages of puberty in skeletal remains.
Resumo:
Background Lifestyle factors such as diet and physical activity have been shown to modify the association between fat mass and obesity–associated (FTO) gene variants and metabolic traits in several populations; however, there are no gene-lifestyle interaction studies, to date, among Asian Indians living in India. In this study, we examined whether dietary factors and physical activity modified the association between two FTO single nucleotide polymorphisms (rs8050136 and rs11076023) (SNPs) and obesity traits and type 2 diabetes (T2D). Methods The study included 734 unrelated T2D and 884 normal glucose-tolerant (NGT) participants randomly selected from the urban component of the Chennai Urban Rural Epidemiology Study (CURES). Dietary intakes were assessed using a validated interviewer administered semi-quantitative food frequency questionnaire (FFQ). Physical activity was based upon the self-report. Interaction analyses were performed by including the interaction terms in the linear/logistic regression model. Results There was a significant interaction between SNP rs8050136 and carbohydrate intake (% energy) (Pinteraction = 0.04), where the ‘A’ allele carriers had 2.46 times increased risk of obesity than those with ‘CC’ genotype (P = 3.0 × 10−5) among individuals in the highest tertile of carbohydrate intake (% energy, 71 %). A significant interaction was also observed between SNP rs11076023 and dietary fibre intake (Pinteraction = 0.0008), where individuals with AA genotype who are in the 3rd tertile of dietary fibre intake had 1.62 cm lower waist circumference than those with ‘T’ allele carriers (P = 0.02). Furthermore, among those who were physically inactive, the ‘A’ allele carriers of the SNP rs8050136 had 1.89 times increased risk of obesity than those with ‘CC’ genotype (P = 4.0 × 10−5). Conclusions This is the first study to provide evidence for a gene-diet and gene-physical activity interaction on obesity and T2D in an Asian Indian population. Our findings suggest that the association between FTO SNPs and obesity might be influenced by carbohydrate and dietary fibre intake and physical inactivity. Further understanding of how FTO gene influences obesity and T2D through dietary and exercise interventions is warranted to advance the development of behavioral intervention and personalised lifestyle strategies, which could reduce the risk of metabolic diseases in this Asian Indian population.
Resumo:
Background & aims: This study evaluated the relationship between vitamin A concentration in maternal milk and the characteristics of the donors of a Brazilian human milk bank. Material and methods: A total of 136 donors were selected in 2003-2004 for micronutrient determinations in breast milk and blood, anthropometric measurements and investigation of obstetric, socioeconomic-demographic factors, and life style. Maternal serum/milk samples were obtained for vitamin A, iron, copper, and zinc determinations. Vitamin A concentrations in breast milk and blood were assessed by high-performance liquid chromatography. Copper, zinc and iron concentrations in breast milk, and copper and zinc concentrations in blood were detected by atomic emission spectrophotometry. Serum ceruloplasmin and serum iron were determined, respectively, by nephelometry and colorimetry. A linear regression model assessed the associations between milk concentrations of vitamin A and maternal factors. Results: Vitamin A in milk presented positive associations with iron in milk (p < 0.001), serum retinol (p = 0.03), maternal work (p = 0.02), maternal age (p = 0.02). and oral contraceptive use (p = 0.01), and a negative association with % body fat (p = 0.01) (R(2) = 0.47). Conclusion: These results suggest that some nutritional, obstetric, and socioeconomic-demographic factors may have an effect on mature breast milk concentrations of vitamin A in apparently healthy Brazilian mothers. (C) 2009 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Resumo:
The objective of this study was to identify and quantify the influence of F (inbreeding coefficient) on weaning weight (WW), weight gain from weaning to 18 months of age (WG345), finishing visual score (precocity) at 18 months of age, muscling visual score at 18 months of age (MUS), hip height (HH), scrotal circumference at 18 months of age (SC), heifer probability of pregnancy at 14 months of age (PP14), and stayability (STAY) in Brazilian Nellore cattle. The complete pedigree included 417,552 animals born between 1984 and 2007 on 12 farms located in the states of Mato Grosso do Sul, Sao Paulo and Bahia. Following the observation of a statistically significant effect (P<0.05) of the covariates individual inbreeding coefficient (F) and maternal inbreeding coefficient, regression analysis of each trait, adjusted for all other effects, was performed as a function of the linear and quadratic effect of F and maternal F (when significant). Inbreeding negatively affected all traits studied (P<0.05), except for muscling. A quadratic effect of individual F on WW, WG345, HH and PP14, and a quadratic effect of maternal F on WG345 and HH were observed. Levels of inbreeding higher than 7-11% affected negatively growth and reproductive performance of Nellore cattle. Therefore, inbreeding should be avoided, except for purposes of genetic breeding whose main objective is the fixation of certain alleles in the population. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This work is an assessment of frequency of extreme values (EVs) of daily rainfall in the city of Sao Paulo. Brazil, over the period 1933-2005, based on the peaks-over-threshold (POT) and Generalized Pareto Distribution (GPD) approach. Usually. a GPD model is fitted to a sample of POT Values Selected With a constant threshold. However. in this work we use time-dependent thresholds, composed of relatively large p quantities (for example p of 0.97) of daily rainfall amounts computed from all available data. Samples of POT values were extracted with several Values of p. Four different GPD models (GPD-1, GPD-2, GPD-3. and GDP-4) were fitted to each one of these samples by the maximum likelihood (ML) method. The shape parameter was assumed constant for the four models, but time-varying covariates were incorporated into scale parameter of GPD-2. GPD-3, and GPD-4, describing annual cycle in GPD-2. linear trend in GPD-3, and both annual cycle and linear trend in GPD-4. The GPD-1 with constant scale and shape parameters is the simplest model. For identification of the best model among the four models WC used rescaled Akaike Information Criterion (AIC) with second-order bias correction. This criterion isolates GPD-3 as the best model, i.e. the one with positive linear trend in the scale parameter. The slope of this trend is significant compared to the null hypothesis of no trend, for about 98% confidence level. The non-parametric Mann-Kendall test also showed presence of positive trend in the annual frequency of excess over high thresholds. with p-value being virtually zero. Therefore. there is strong evidence that high quantiles of daily rainfall in the city of Sao Paulo have been increasing in magnitude and frequency over time. For example. 0.99 quantiles of daily rainfall amount have increased by about 40 mm between 1933 and 2005. Copyright (C) 2008 Royal Meteorological Society
Resumo:
Kidney transplantation improves the quality of life of end-stage renal disease patients. The quality of life benefits, however, pertain to patients on average, not to all transplant recipients. The aim of this study was to identify factors associated with health-related quality of life after kidney transplantation. Population-based study with a cross-sectional design was carried out and quality of life was assessed by SF-36 Health Survey Version 1. A multivariate linear regression model was constructed with sociodemographic, clinical and laboratory data as independent variables. Two hundred and seventy-two kidney recipients with a functioning graft were analyzed. Hypertension, diabetes, higher serum creatinine and lower hematocrit were independently and significantly associated with lower scores for the SF-36 oblique physical component summary (PCSc). The final regression model explained 11% of the PCSc variance. The scores of oblique mental component summary (MCSc) were worse for females, patients with a lower income, unemployed and patients with a higher serum creatinine. The regression model explained 9% of the MCSc variance. Among the studied variables, comorbidity and graft function were the main factors associated with the PCSc, and sociodemographic variables and graft function were the main determinants of MCSc. Despite comprehensive, the final regression models explained only a little part of the heath-related quality of life variance. Additional factors, such as personal, environmental and clinical ones might influence quality of life perceived by the patients after kidney transplantation.
Resumo:
In this article, we deal with the issue of performing accurate small-sample inference in the Birnbaum-Saunders regression model, which can be useful for modeling lifetime or reliability data. We derive a Bartlett-type correction for the score test and numerically compare the corrected test with the usual score test and some other competitors.
Resumo:
The Birnbaum-Saunders regression model is commonly used in reliability studies. We address the issue of performing inference in this class of models when the number of observations is small. Our simulation results suggest that the likelihood ratio test tends to be liberal when the sample size is small. We obtain a correction factor which reduces the size distortion of the test. Also, we consider a parametric bootstrap scheme to obtain improved critical values and improved p-values for the likelihood ratio test. The numerical results show that the modified tests are more reliable in finite samples than the usual likelihood ratio test. We also present an empirical application. (C) 2009 Elsevier B.V. All rights reserved.