811 resultados para production planning information systems
Resumo:
Community engagement with time poor and seemingly apathetic citizens continues to challenge local governments. Capturing the attention of a digitally literate community who are technology and socially savvy adds a new quality to this challenge. Community engagement is resource and time intensive, yet local governments have to manage on continually tightened budgets. The benefits of assisting citizens in taking ownership in making their community and city a better place to live in collaboration with planners and local governments are well established. This study investigates a new collaborative form of civic participation and engagement for urban planning that employs in-place digital augmentation. It enhances people’s experience of physical spaces with digital technologies that are directly accessible within that space, in particular through interaction with mobile phones and public displays. The study developed and deployed a system called Discussions in Space (DIS) in conjunction with a major urban planning project in Brisbane. Planners used the system to ask local residents planning-related questions via a public screen, and passers-by sent responses via SMS or Twitter onto the screen for others to read and reflect, hence encouraging in-situ, real-time, civic discourse. The low barrier of entry proved to be successful in engaging a wide range of residents who are generally not heard due to their lack of time or interest. The system also reflected positively on the local government for reaching out in this way. Challenges and implications of the short-texted and ephemeral nature of this medium were evaluated in two focus groups with urban planners. The paper concludes with an analysis of the planners’ feedback evaluating the merits of the data generated by the system to better engage with Australia’s new digital locals.
Resumo:
Objective: to assess the accuracy of data linkage across the spectrum of emergency care in the absence of a unique patient identifier, and to use the linked data to examine service delivery outcomes in an emergency department setting. Design: automated data linkage and manual data linkage were compared to determine their relative accuracy. Data were extracted from three separate health information systems: ambulance, ED and hospital inpatients, then linked to provide information about the emergency journey of each patient. The linking was done manually through physical review of records and automatically using a data linking tool (Health Data Integration) developed by the CSIRO. Match rate and quality of the linking were compared. Setting: 10, 835 patient presentations to a large, regional teaching hospital ED over a two month period (August-September 2007). Results: comparison of the manual and automated linkage outcomes for each pair of linked datasets demonstrated a sensitivity of between 95% and 99%; a specificity of between 75% and 99%; and a positive predictive value of between 88% and 95%. Conclusions: Our results indicate that automated linking provides a sound basis for health service analysis, even in the absence of a unique patient identifier. The use of an automated linking tool yields accurate data suitable for planning and service delivery purposes and enables the data to be linked regularly to examine service delivery outcomes.
Resumo:
A distinctive feature of Chinese test is that a Chinese document is a sequence of Chinese with no space or boundary between Chinese words. This feature makes Chinese information retrieval more difficult since a retrieved document which contains the query term as a sequence of Chinese characters may not be really relevant to the query since the query term (as a sequence Chinese characters) may not be a valid Chinese word in that documents. On the other hand, a document that is actually relevant may not be retrieved because it does not contain the query sequence but contains other relevant words. In this research, we propose a hybrid Chinese information retrieval model by incorporating word-based techniques with the traditional character-based techniques. The aim of this approach is to investigate the influence of Chinese segmentation on the performance of Chinese information retrieval. Two ranking methods are proposed to rank retrieved documents based on the relevancy to the query calculated by combining character-based ranking and word-based ranking. Our experimental results show that Chinese segmentation can improve the performance of Chinese information retrieval, but the improvement is not significant if it incorporates only Chinese segmentation with the traditional character-based approach.
Resumo:
Recommender systems are one of the recent inventions to deal with ever growing information overload. Collaborative filtering seems to be the most popular technique in recommender systems. With sufficient background information of item ratings, its performance is promising enough. But research shows that it performs very poor in a cold start situation where previous rating data is sparse. As an alternative, trust can be used for neighbor formation to generate automated recommendation. User assigned explicit trust rating such as how much they trust each other is used for this purpose. However, reliable explicit trust data is not always available. In this paper we propose a new method of developing trust networks based on user’s interest similarity in the absence of explicit trust data. To identify the interest similarity, we have used user’s personalized tagging information. This trust network can be used to find the neighbors to make automated recommendations. Our experiment result shows that the proposed trust based method outperforms the traditional collaborative filtering approach which uses users rating data. Its performance improves even further when we utilize trust propagation techniques to broaden the range of neighborhood.
Resumo:
This study investigates a way to systematically integrate information literacy (IL) into an undergraduate academic programme and develops a model for integrating information literacy across higher education curricula. Curricular integration of information literacy in this study means weaving information literacy into an academic curriculum. In the associated literature, it is also referred to as the information literacy embedding approach or the intra-curricular approach. The key findings identified from this study are presented in 4 categories: the characteristics of IL integration; the key stakeholders in IL integration; IL curricular design strategies; and the process of IL curricular integration. Three key characteristics of the curricular integration of IL are identified: collaboration and negotiation, contextualisation and ongoing interaction with information. The key stakeholders in the curricular integration of IL are recognised as the librarians, the course coordinators and lecturers, the heads of faculties or departments, and the students. Some strategies for IL curricular design include: the use of IL policies and standards in IL curricular design; the combination of face to face and online teaching as an emerging trend; the use of IL assessment tools which play an important role in IL integration. IL can be integrated into the intended curriculum (what an institution expects its students to learn), the offered curriculum (what the teachers teach) and the received curriculum (what students actually learn). IL integration is a process of negotiation, collaboration and the implementation of the intended curriculum. IL can be integrated at different levels of curricula such as: institutional, faculty, departmental, course and class curriculum levels. Based on these key findings, an IL curricular integration model is developed. The model integrates curriculum, pedagogy and learning theories, IL theories, IL guidelines and the collaboration of multiple partners. The model provides a practical approach to integrating IL into multiple courses across an academic degree. The development of the model was based on the IL integration experiences of various disciplines in three universities and the implementation experience of an engineering programme at another university; thus it may be of interest to other disciplines. The model has the potential to enhance IL teaching and learning, curricular development and to implement graduate attributes in higher education. Sociocultural theories are applied to the research process and IL curricular design of this study. Sociocultural theories describe learning as being embedded within social events and occurring as learners interact with other people, objects, and events in a collaborative environment. Sociocultural theories are applied to explore how academic staff and librarians experience the curricular integration of IL; they also support collaboration in the curricular integration of IL and the development of an IL integration model. This study consists of two phases. Phase I (2007) was the interview phase where both academic staff and librarians at three IL active universities were interviewed. During this phase, attention was paid specifically to the practical process of curricular integration of IL and IL activity design. Phase II, the development phase (2007-2008), was conducted at a fourth university. This phase explores the systematic integration of IL into an engineering degree from Year 1 to Year 4. Learning theories such as sociocultural theories, Bloom’s Taxonomy and IL theories are used in IL curricular development. Based on the findings from both phases, an IL integration model was developed. The findings and the model contribute to IL education, research and curricular development in higher education. The sociocultural approach adopted in this study also extends the application of sociocultural theories to the IL integration process and curricular design in higher education.
Resumo:
The paper describes the processes and the outcomes of the ranking of LIS journal titles by Australia’s LIS researchers during 2007-8, firstly through the Australian federal government’s Research Quality Framework (RQF) process and then its replacement, the Excellence in Research for Australia (ERA) initiative. The requirement to rank the journals titles used came from discussions held at the RQF panel meeting held in February 2007 in Canberra, Australia. While it was recognised that the Web of Science (formerly ISI) journal impact approach of journal acceptance for measures of research quality and impact might not work for LIS, it was apparent that this model would be the default if no other ranking of journal titles became apparent. Although an increasing number of LIS and related discipline journals were appearing in the Web of Science listed rankings, the number was few and it was thus decided by the Australian LIS research community to undertake the ranking exercise.
Resumo:
In vector space based approaches to natural language processing, similarity is commonly measured by taking the angle between two vectors representing words or documents in a semantic space. This is natural from a mathematical point of view, as the angle between unit vectors is, up to constant scaling, the only unitarily invariant metric on the unit sphere. However, similarity judgement tasks reveal that human subjects fail to produce data which satisfies the symmetry and triangle inequality requirements for a metric space. A possible conclusion, reached in particular by Tversky et al., is that some of the most basic assumptions of geometric models are unwarranted in the case of psychological similarity, a result which would impose strong limits on the validity and applicability vector space based (and hence also quantum inspired) approaches to the modelling of cognitive processes. This paper proposes a resolution to this fundamental criticism of of the applicability of vector space models of cognition. We argue that pairs of words imply a context which in turn induces a point of view, allowing a subject to estimate semantic similarity. Context is here introduced as a point of view vector (POVV) and the expected similarity is derived as a measure over the POVV's. Different pairs of words will invoke different contexts and different POVV's. Hence the triangle inequality ceases to be a valid constraint on the angles. We test the proposal on a few triples of words and outline further research.
Resumo:
Item folksonomy or tag information is a kind of typical and prevalent web 2.0 information. Item folksonmy contains rich opinion information of users on item classifications and descriptions. It can be used as another important information source to conduct opinion mining. On the other hand, each item is associated with taxonomy information that reflects the viewpoints of experts. In this paper, we propose to mine for users’ opinions on items based on item taxonomy developed by experts and folksonomy contributed by users. In addition, we explore how to make personalized item recommendations based on users’ opinions. The experiments conducted on real word datasets collected from Amazon.com and CiteULike demonstrated the effectiveness of the proposed approaches.
Resumo:
The Large scaled emerging user created information in web 2.0 such as tags, reviews, comments and blogs can be used to profile users’ interests and preferences to make personalized recommendations. To solve the scalability problem of the current user profiling and recommender systems, this paper proposes a parallel user profiling approach and a scalable recommender system. The current advanced cloud computing techniques including Hadoop, MapReduce and Cascading are employed to implement the proposed approaches. The experiments were conducted on Amazon EC2 Elastic MapReduce and S3 with a real world large scaled dataset from Del.icio.us website.
Resumo:
Social tags in web 2.0 are becoming another important information source to describe the content of items as well as to profile users’ topic preferences. However, as arbitrary words given by users, tags contains a lot of noise such as tag synonym and semantic ambiguity a large number personal tags that only used by one user, which brings challenges to effectively use tags to make item recommendations. To solve these problems, this paper proposes to use a set of related tags along with their weights to represent semantic meaning of each tag for each user individually. A hybrid recommendation generation approaches that based on the weighted tags are proposed. We have conducted experiments using the real world dataset obtained from Amazon.com. The experimental results show that the proposed approaches outperform the other state of the art approaches.
Resumo:
What informs members of the church community as they learn? Do the ways people engage with information differ according to the circumstances in which they learn? Informed learning, or the ways in which people use information in the learning experience and the degree to which they are aware of that, has become a focus of contemporary information literacy research. This essay explores the nature of informed learning in the context of the church as a learning community. It is anticipated that insights resulting from this exploration may help church organisations, church leaders and lay people to consider how information can be used to grow faith, develop relationships, manage the church and respond to religious knowledge, which support the pursuit of spiritual wellness and the cultivation of lifelong learning. Information professionals within the church community and the broader information profession are encouraged to foster their awareness of the impact that engagement with information has in the learning experience and in the prioritising of lifelong learning in community contexts.
Resumo:
Intelligent agents are an advanced technology utilized in Web Intelligence. When searching information from a distributed Web environment, information is retrieved by multi-agents on the client site and fused on the broker site. The current information fusion techniques rely on cooperation of agents to provide statistics. Such techniques are computationally expensive and unrealistic in the real world. In this paper, we introduce a model that uses a world ontology constructed from the Dewey Decimal Classification to acquire user profiles. By search using specific and exhaustive user profiles, information fusion techniques no longer rely on the statistics provided by agents. The model has been successfully evaluated using the large INEX data set simulating the distributed Web environment.
Resumo:
This paper presents a novel two-stage information filtering model which combines the merits of term-based and pattern- based approaches to effectively filter sheer volume of information. In particular, the first filtering stage is supported by a novel rough analysis model which efficiently removes a large number of irrelevant documents, thereby addressing the overload problem. The second filtering stage is empowered by a semantically rich pattern taxonomy mining model which effectively fetches incoming documents according to the specific information needs of a user, thereby addressing the mismatch problem. The experiments have been conducted to compare the proposed two-stage filtering (T-SM) model with other possible "term-based + pattern-based" or "term-based + term-based" IF models. The results based on the RCV1 corpus show that the T-SM model significantly outperforms other types of "two-stage" IF models.
Resumo:
This paper proposes and synthesizes from previous design science(DS) methodological literature a structured and detailed DS Roadmap for the conduct of DS research. The Roadmap is a general guide for researchers to carry out DS research by suggesting reasonably detailed activities.Though highly tentative, it is believed the Roadmap usefully inter-relates many otherwise seemingly disparate, overlapping or conflicting concepts. It is hoped the DS Roadmap will aid in the planning, execution and communication of DS research,while also attracting constructive criticism, improvements and extensions. A key distinction of the Roadmap from other DS research methods is its breadth of coverage of DS research aspects and activities; its detail and scope. We demonstrate and evaluate the Roadmap by presenting two case studies in terms of the DS Roadmap.
Resumo:
This paper presents an approach to predict the operating conditions of machine based on classification and regression trees (CART) and adaptive neuro-fuzzy inference system (ANFIS) in association with direct prediction strategy for multi-step ahead prediction of time series techniques. In this study, the number of available observations and the number of predicted steps are initially determined by using false nearest neighbor method and auto mutual information technique, respectively. These values are subsequently utilized as inputs for prediction models to forecast the future values of the machines’ operating conditions. The performance of the proposed approach is then evaluated by using real trending data of low methane compressor. A comparative study of the predicted results obtained from CART and ANFIS models is also carried out to appraise the prediction capability of these models. The results show that the ANFIS prediction model can track the change in machine conditions and has the potential for using as a tool to machine fault prognosis.