925 resultados para probabilistic principal component analysis (probabilistic PCA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Espécies forrageiras adaptadas às condições semiáridas são uma alternativa para reduzir os impactos negativos na cadeia produtiva de ruminantes da região Nordeste brasileira devido à sazonalidade na oferta de forragem, além de reduzir custo com o fornecimento de alimentos concentrados. Dentre as espécies, a vagem de algaroba (Prosopis juliflora SW D.C.) e palma forrageira (Opuntia e Nopalea) ganham destaque por tolerarem o déficit hídrico e produzirem em períodos onde a oferta de forragem está reduzida, além de apresentam bom valor nutricional e serem bem aceitas pelos animais. Porém, devido à variação na sua composição, seu uso na alimentação animal exige o conhecimento profundo da sua composição para a elaboração de dietas balanceadas. No entanto, devido ao custo e tempo para análise, os produtores não fazem uso da prática de análise da composição químico-bromatológica dos alimentos. Por isto, a espectroscopia de reflectância no infravermelho próximo (NIRS) representa uma importante alternativa aos métodos tradicionais. Objetivou-se com este estudo desenvolver e validar modelos de predição da composição bromatológica de vagem de algaroba e palma forrageira baseados em espectroscopia NIRS, escaneadas em dois modelos de equipamentos e com diferentes processamentos da amostra. Foram coletadas amostras de vagem de algaroba nos estados do Ceará, Bahia, Paraíba e Pernambuco, e amostras de palma forrageira nos estados do Ceará, Paraíba e Pernambuco, frescas (in natura) ou pré-secas e moídas. Para obtenção dos espectros utilizaram-se dois equipamentos NIR, Perten DA 7250 e FOSS 5000. Inicialmente os alimentos foram escaneados in natura em aparelho do modelo Perten, e, com o auxílio do software The Unscrambler 10.2 foi selecionado um grupo de amostras para o banco de calibração. As amostras selecionadas foram secas e moídas, e escaneadas novamente em equipamentos Perten e FOSS. Os valores dos parâmetros de referência foram obtidos por meio de metodologias tradicionalmente aplicadas em laboratório de nutrição animal para matéria seca (MS), matéria mineral (MM), matéria orgânica (MO), proteína bruta (PB), estrato etéreo (EE), fibra solúvel em detergente neutro (FDN), fibra solúvel em detergente ácido (FDA), hemicelulose (HEM) e digestibilidade in vitro da matéria seca (DIVMS). O desempenho dos modelos foi avaliado de acordo com os erros médios de calibração (RMSEC) e validação (RMSECV), coeficiente de determinação (R2 ) e da relação de desempenho de desvio dos modelos (RPD). A análise exploratória dos dados, por meio de tratamentos espectrais e análise de componentes principais (PCA), demonstraram que os bancos de dados eram similares entre si, dando segurança de desenvolver os modelos com todas as amostras selecionadas em um único modelo para cada alimento, algaroba e palma. Na avaliação dos resultados de referência, observou-se que a variação dos resultados para cada parâmetro corroboraram com os descritos na literatura. No desempenho dos modelos, aqueles desenvolvidos com pré-processamento da amostra (pré-secagem e moagem) se mostraram mais robustos do que aqueles construídos com amostras in natura. O aparelho NIRS Perten apresentou desempenho semelhante ao equipamento FOSS, apesar desse último cobrir uma faixa espectral maior e com intervalos de leituras menores. A técnica NIR, associada ao método de calibração multivariada de regressão por meio de quadrados mínimos (PLS), mostrou-se confiável para prever a composição químico-bromatológica de vagem de algaroba e da palma forrageira. Abstract: Forage species adapted to semi-arid conditions are an alternative to reduce the negative impacts in the feed supply for ruminants in the Brazilian Northeast region, due to seasonality in forage availability, as well as in the reducing of cost by providing concentrated feedstuffs. Among the species, mesquite pods (Prosopis juliflora SW DC) and spineless cactus (Opuntia and Nopalea) are highlighted for tolerating the drought and producion in periods where the forage is scarce, and have high nutritional value and also are well accepted by the animals. However, its use in animal diets requires a knowledge about its composition to prepare balanced diets. However, farmers usually do not use feed composition analysis, because their high cost and time-consuming. Thus, the Near Infrared Reflectance Spectroscopy in the (NIRS) is an important alternative to traditional methods. The objective of this study to develop and validate predictive models of the chemical composition of mesquite pods and spineless cactus-based NIRS spectroscopy, scanned in two different spectrometers and sample processing. Mesquite pods samples were collected in the states of Ceará, Bahia, Paraiba and Pernambuco, and samples of forage cactus in the states of Ceará, Paraíba and Pernambuco. In order to obtain the spectra, it was used two NIR equipment: Perten DA 7250 and FOSS 5000. sSpectra of samples were initially obtained fresh (as received) using Perten instrument, and with The Unscrambler software 10.2, a group of subsamples was selected to model development, keeping out redundant ones. The selected samples were dried and ground, and scanned again in both Perten and FOSS instruments. The values of the reference analysis were obtained by methods traditionally applied in animal nutrition laboratory to dry matter (DM), mineral matter (MM), organic matter (OM), crude protein (CP), ether extract (EE), soluble neutral detergent fiber (NDF), soluble acid detergent fiber (ADF), hemicellulose ( HEM) and in vitro digestibility of dry matter (DIVDM). The performance of the models was evaluated according to the Root Mean Square Error of Calibration (RMSEC) and cross-validation (RMSECV), coefficient of determination (R2 ) and the deviation of Ratio of performance Deviation of the models (RPD). Exploratory data analysis through spectral treatments and principal component analysis (PCA), showed that the databases were similar to each other, and may be treated asa single model for each feed - mesquite pods and cactus. Evaluating the reference results, it was observed that the variation were similar to those reported in the literature. Comparing the preprocessing of samples, the performance ofthose developed with preprocessing (dried and ground) of the sample were more robust than those built with fresh samples. The NIRS Perten device performance similar to FOSS equipment, although the latter cover a larger spectral range and with lower readings intervals. NIR technology associate do multivariate techniques is reliable to predict the bromatological composition of mesquite pods and cactus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Colourants are substances used to change the colour of something, and are classified in three typology of colorants: a) pigments, b) dyes, and c) lakes and hybrid pigments. Their identification is very important when studying cultural heritage; it gives information about the artistic technique, can help in dating, and offers insights on the condition of the object. Besides, the study of the degradation phenomena constitutes a framework for the preventive conservation strategies, provides evidence of the object's original appearance, and contributes to the authentication of works of art. However, the complexity of these systems makes it impossible to achieve a complete understanding using a single technique, making necessary a multi-analytical approach. This work focuses on the set-up and application of advanced spectroscopic methods for the study of colourants in cultural heritage. The first chapter presents the identification of modern synthetic organic pigments using Metal Underlayer-ATR (MU-ATR), and the characterization of synthetic dyes extracted from wool fibres using a combination of Thin Layer Chromatography (TLC) coupled to MU-ATR using AgI@Au plates. The second chapter presents the study of the effect of metallic Ag in the photo-oxidation process of orpiment, and the influence of the different factors, such as light and relative humidity. We used a combination of vibrational and synchrotron radiation-based X-ray microspectroscopy techniques: µ-ATR-FT-IR, µ-Raman, SR-µ-XRF, µ-XANES at S K-, Ag L3- and As K-edges and SR-µ-XRD. The third chapter presents the study of metal carboxylates in paintings, specifically on the formation of Zn and Pb carboxylates in three different binders: stand linseed oil, whole egg, and beeswax. We used micro-ATR-FT-IR, macro FT-IR in total reflection (rMA-FT-IR), portable Near-Infrared spectroscopy (NIR), macro X-ray Powder Diffraction (MA-XRPD), XRPD, and Gas Chromatography Mass-Spectrometry (GC-MS). For the data processing, we explored the data from rMA-FT-IR and NIR with the Principal Component Analysis (PCA).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The surface of the Earth is subjected to vertical deformations caused by geophysical and geological processes which can be monitored by Global Positioning System (GPS) observations. The purpose of this work is to investigate GPS height time series to identify interannual signals affecting the Earth’s surface over the European and Mediterranean area, during the period 2001-2019. Thirty-six homogeneously distributed GPS stations were selected from the online dataset made available by the Nevada Geodetic Laboratory (NGL) on the basis of the length and quality of the data series. The Principal Component Analysis (PCA) is the technique applied to extract the main patterns of the space and time variability of the GPS Up coordinate. The time series were studied by means of a frequency analysis using a periodogram and the real-valued Morlet wavelet. The periodogram is used to identify the dominant frequencies and the spectral density of the investigated signals; the second one is applied to identify the signals in the time domain and the relevant periodicities. This study has identified, over European and Mediterranean area, the presence of interannual non-linear signals with a period of 2-to-4 years, possibly related to atmospheric and hydrological loading displacements and to climate phenomena, such as El Niño Southern Oscillation (ENSO). A clear signal with a period of about six years is present in the vertical component of the GPS time series, likely explainable by the gravitational coupling between the Earth’s mantle and the inner core. Moreover, signals with a period in the order of 8-9 years, might be explained by mantle-inner core gravity coupling and the cycle of the lunar perigee, and a signal of 18.6 years, likely associated to lunar nodal cycle, were identified through the wavelet spectrum. However, these last two signals need further confirmation because the present length of the GPS time series is still too short when compared to the periods involved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research project is focused on the investigation of the polymorphism of crystalline molecular material for organic semiconductor applications under non-ambient conditions, and the solid-state characterization and crystal structure determination of the different polymorphic forms. In particular, this research project has tackled the investigation and characterization of the polymorphism of perylene diimides (PDIs) derivatives at high temperatures and pressures, in particular N,N’-dialkyl-3,4,9,10-perylendiimide (PDI-Cn, with n = 5, 6, 7, 8). These molecules are characterized by excellent chemical, thermal, and photostability, high electron affinity, strong absorption in the visible region, low LUMO energies, good air stability, and good charge transport properties, which can be tuned via functionalization; these features make them promising n-type organic semiconductor materials for several applications such as OFETs, OPV cells, laser dye, sensors, bioimaging, etc. The thermal characterization of PDI-Cn was carried out by a combination of differential scanning calorimetry, variable temperature X-ray diffraction, hot-stage microscopy, and in the case of PDI-C5 also variable temperature Raman spectroscopy. Whereas crystal structure determination was carried out by both Single Crystal and Powder X-ray diffraction. Moreover, high-pressure polymorphism via pressure-dependent UV-Vis absorption spectroscopy and high-pressure Single Crystal X-ray diffraction was carried out in this project. A data-driven approach based on a combination of self-organizing maps (SOM) and principal component analysis (PCA) is also reported was used to classify different π-stacking arrangements of PDI derivatives into families of similar crystal packing. Besides the main project, in the framework of structure-property analysis under non-ambient conditions, the structural investigation of the water loss in Pt- and Pd- based vapochromic potassium/lithium salts upon temperature, and the investigation of structure-mechanical property relationships in polymorphs of a thienopyrrolyldione endcapped oligothiophene (C4-NT3N) are reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work, in collaboration with the Romagna Reclamation Consortium, has the aim of studying the heavy metals concentration distribution in the drainage canals of the Ravenna coastal basins, Italy. Particular attention was given to the area of the V Fosso Ghiaia and VI Bevanella basins, where water and sediment samples were collected in the field and integrated with existing databases. The hydrological regime is controlled and managed by the Consortium, which has divided the territory into several mechanical drainage basins. XRF was performed on 21 sediment samples and pH, EC, T°, Fe2+ and Fetot were measured on 15 water samples by probes and spectrophotometer, respectively. Heavy metals concentrations exceeding legal limits of the D.LGS n ° 152/2006 were found for As, Co, Cr, Pb and Zn. These results were then integrated with canal sediment analyses provided by the Consortium to perform a Principal Component Analysis. PCA results show that the main variable affecting heavy metals distribution is the use of fertilizers, followed by distance from sea, and altimetry, which are directly linked to salinity. Heavy metals concentrations increase with increasing use of fertilizers, which are mainly due to the widespread agricultural practices and industrial land use in the area. High heavy metals concentrations are also found in the canals interested by higher salinity (especially Pinetale Ramazzotti). In fact, the area is affected by salinization caused by a water table below sea level and upward seepage of salty oxygen-poor saline water from the bottom of the aquifer. According to the literature, iron and manganese oxides were found to be an important factor in controlling the heavy metals distribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questo elaborato vengono analizzate differenti tecniche per la detection di jammer attivi e costanti in una comunicazione satellitare in uplink. Osservando un numero limitato di campioni ricevuti si vuole identificare la presenza di un jammer. A tal fine sono stati implementati i seguenti classificatori binari: support vector machine (SVM), multilayer perceptron (MLP), spectrum guarding e autoencoder. Questi algoritmi di apprendimento automatico dipendono dalle features che ricevono in ingresso, per questo motivo è stata posta particolare attenzione alla loro scelta. A tal fine, sono state confrontate le accuratezze ottenute dai detector addestrati utilizzando differenti tipologie di informazione come: i segnali grezzi nel tempo, le statistical features, le trasformate wavelet e lo spettro ciclico. I pattern prodotti dall’estrazione di queste features dai segnali satellitari possono avere dimensioni elevate, quindi, prima della detection, vengono utilizzati i seguenti algoritmi per la riduzione della dimensionalità: principal component analysis (PCA) e linear discriminant analysis (LDA). Lo scopo di tale processo non è quello di eliminare le features meno rilevanti, ma combinarle in modo da preservare al massimo l’informazione, evitando problemi di overfitting e underfitting. Le simulazioni numeriche effettuate hanno evidenziato come lo spettro ciclico sia in grado di fornire le features migliori per la detection producendo però pattern di dimensioni elevate, per questo motivo è stato necessario l’utilizzo di algoritmi di riduzione della dimensionalità. In particolare, l'algoritmo PCA è stato in grado di estrarre delle informazioni migliori rispetto a LDA, le cui accuratezze risentivano troppo del tipo di jammer utilizzato nella fase di addestramento. Infine, l’algoritmo che ha fornito le prestazioni migliori è stato il Multilayer Perceptron che ha richiesto tempi di addestramento contenuti e dei valori di accuratezza elevati.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a consequence of the diffusion of next generation sequencing techniques, metagenomics databases have become one of the most promising repositories of information about features and behavior of microorganisms. One of the subjects that can be studied from those data are bacteria populations. Next generation sequencing techniques allow to study the bacteria population within an environment by sampling genetic material directly from it, without the needing of culturing a similar population in vitro and observing its behavior. As a drawback, it is quite complex to extract information from those data and usually there is more than one way to do that; AMR is no exception. In this study we will discuss how the quantified AMR, which regards the genotype of the bacteria, can be related to the bacteria phenotype and its actual level of resistance against the specific substance. In order to have a quantitative information about bacteria genotype, we will evaluate the resistome from the read libraries, aligning them against CARD database. With those data, we will test various machine learning algorithms for predicting the bacteria phenotype. The samples that we exploit should resemble those that could be obtained from a natural context, but are actually produced by a read libraries simulation tool. In this way we are able to design the populations with bacteria of known genotype, so that we can relay on a secure ground truth for training and testing our algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrophilic and lipophilic extracts of ten cultivars of Highbush and Rabbiteye Brazilian blueberries (Vaccinium corymbosum L. and Vacciniumashei Reade, respectively) that are used for commercial production were analysed for antioxidant activity by the FRAP, ORAC, ABTS and β-carotene-linoleate methods. Results were correlated to the amounts of carotenoids, total phenolics and anthocyanins. Brazilian blueberries had relatively high concentration of total phenolics (1,622-3,457 mg gallic acid equivalents per 100 g DW) and total anthocyanins (140-318 mg cyanidin-3-glucoside equivalents per 100 g DW), as well as being a good source of carotenoids. There was a higher positive correlation between the amounts of these compounds and the antioxidant activity of hydrophilic compared to lipophilic extracts. There were also significant differences in the level of bioactive compounds and antioxidant activities between different cultivars, production location and year of cultivation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dulce de leche samples available in the Brazilian market were submitted to sensory profiling by quantitative descriptive analysis and acceptance test, as well sensory evaluation using the just-about-right scale and purchase intent. External preference mapping and the ideal sensory characteristics of dulce de leche were determined. The results were also evaluated by principal component analysis, hierarchical cluster analysis, partial least squares regression, artificial neural networks, and logistic regression. Overall, significant product acceptance was related to intermediate scores of the sensory attributes in the descriptive test, and this trend was observed even after consumer segmentation. The results obtained by sensometric techniques showed that optimizing an ideal dulce de leche from the sensory standpoint is a multidimensional process, with necessary adjustments on the appearance, aroma, taste, and texture attributes of the product for better consumer acceptance and purchase. The optimum dulce de leche was characterized by high scores for the attributes sweet taste, caramel taste, brightness, color, and caramel aroma in accordance with the preference mapping findings. In industrial terms, this means changing the parameters used in the thermal treatment and quantitative changes in the ingredients used in formulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we discuss the use of multi-way principal component analysis combined with comprehensive two-dimensional gas chromatography to study the volatile metabolites of the saprophytic fungus Memnoniella sp. isolated in vivo by headspace solid-phase microextraction. This fungus has been identified as having the ability to induce plant resistance against pathogens, possibly through its volatile metabolites. Adequate culture media was inoculated, and its headspace was then sampled with a solid-phase microextraction fiber and chromatographed every 24 h over seven days. The raw chromatogram processing using multi-way principal component analysis allowed the determination of the inoculation period, during which the concentration of volatile metabolites was maximized, as well as the discrimination of the appropriate peaks from the complex culture media background. Several volatile metabolites not previously described in the literature on biocontrol fungi were observed, as well as sesquiterpenes and aliphatic alcohols. These results stress that, due to the complexity of multidimensional chromatographic data, multivariate tools might be mandatory even for apparently trivial tasks, such as the determination of the temporal profile of metabolite production and extinction. However, when compared with conventional gas chromatography, the complex data processing yields a considerable improvement in the information obtained from the samples. This article is protected by copyright. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, agronomical researchers began to cultivate several olive varieties in different regions of Brazil to produce virgin olive oil (VOO). Because there has been no reported data regarding the phenolic profile of the first Brazilian VOO, the aim of this work was to determine phenolic contents of these samples using rapid-resolution liquid chromatography coupled to electrospray ionisation time-of-flight mass spectrometry. 25 VOO samples from Arbequina, Koroneiki, Arbosana, Grappolo, Manzanilla, Coratina, Frantoio and MGS Mariense varieties from three different Brazilian states and two crops were analysed. It was possible to quantify 19 phenolic compounds belonging to different classes. The results indicated that Brazilian VOOs have high total phenolic content because the values were comparable with those from high-quality VOOs produced in other countries. VOOs from Coratina, Arbosana and Grappolo presented the highest total phenolic content. These data will be useful in the development and improvement of Brazilian VOO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conventional reflectance spectroscopy (NIRS) and hyperspectral imaging (HI) in the near-infrared region (1000-2500 nm) are evaluated and compared, using, as the case study, the determination of relevant properties related to the quality of natural rubber. Mooney viscosity (MV) and plasticity indices (PI) (PI0 - original plasticity, PI30 - plasticity after accelerated aging, and PRI - the plasticity retention index after accelerated aging) of rubber were determined using multivariate regression models. Two hundred and eighty six samples of rubber were measured using conventional and hyperspectral near-infrared imaging reflectance instruments in the range of 1000-2500 nm. The sample set was split into regression (n = 191) and external validation (n = 95) sub-sets. Three instruments were employed for data acquisition: a line scanning hyperspectral camera and two conventional FT-NIR spectrometers. Sample heterogeneity was evaluated using hyperspectral images obtained with a resolution of 150 × 150 μm and principal component analysis. The probed sample area (5 cm(2); 24,000 pixels) to achieve representativeness was found to be equivalent to the average of 6 spectra for a 1 cm diameter probing circular window of one FT-NIR instrument. The other spectrophotometer can probe the whole sample in only one measurement. The results show that the rubber properties can be determined with very similar accuracy and precision by Partial Least Square (PLS) regression models regardless of whether HI-NIR or conventional FT-NIR produce the spectral datasets. The best Root Mean Square Errors of Prediction (RMSEPs) of external validation for MV, PI0, PI30, and PRI were 4.3, 1.8, 3.4, and 5.3%, respectively. Though the quantitative results provided by the three instruments can be considered equivalent, the hyperspectral imaging instrument presents a number of advantages, being about 6 times faster than conventional bulk spectrometers, producing robust spectral data by ensuring sample representativeness, and minimizing the effect of the presence of contaminants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the volatile chromatographic profiles of roasted Arabica coffees, previously analyzed for their sensorial attributes, were explored by principal component analysis. The volatile extraction technique used was the solid phase microextraction. The correlation optimized warping algorithm was used to align the gas chromatographic profiles. Fifty four compounds were found to be related to the sensorial attributes investigated. The volatiles pyrrole, 1-methyl-pyrrole, cyclopentanone, dihydro-2-methyl-3-furanone, furfural, 2-ethyl-5-methyl-pyrazine, 2-etenyl-n-methyl-pyrazine, 5-methyl-2-propionyl-furan compounds were important for the differentiation of coffee beverage according to the flavour, cleanliness and overall quality. Two figures of merit, sensitivity and specificity (or selectivity), were used to interpret the sensory attributes studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Easter egg is a popular chocolate-candy in egg form commercialized in Brazil during Easter time. In this research, Quantitative Descriptive Analysis was applied to select sensory attributes which best define the modifications in appearance, aroma, flavor and texture when cocoa butter equivalent (CBE) is added to Easter eggs. Samples with and without CBE were evaluated by a selected panel and fourteen attributes best describing similarities and differences between them, were defined. Terms definition, reference materials and a consensus ballot were developed. After a training period, panelists evaluated the samples in a Complete Block Design using a 9 cm unstructured scale. Principal Component Analysis, ANOVA and Tukey test (p<0.05) were applied to the data in order to select attributes which best discriminated and characterized the samples. Samples showed significant differences (p<0.05) in all attributes. Easter egg without CBE showed higher intensities (p<0.05) in relation to the following descriptors: brown color, characteristic aroma, cocoa mass aroma, cocoa butter aroma, characteristic flavor, cocoa mass flavor, hardness and brittleness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ferruginous "campos rupestres" are a particular type of vegetation growing on iron-rich primary soils. We investigated the influence of soil properties on plant species abundance at two sites of ferruginous "campos rupestres" and one site of quartzitic "campo rupestre", all of them in "Quadrilátero Ferrífero", in Minas Gerais State, southeastern Brazil. In each site, 30 quadrats were sampled to assess plant species composition and abundance, and soil samples were taken to perform chemical and physical analyses. The analyzed soils are strongly acidic and presented low fertility and high levels of metallic cations; a principal component analysis of soil data showed a clear segregation among sites due mainly to fertility and heavy metals content, especially Cu, Zn, and Pb. The canonical correspondence analysis indicated a strong correlation between plant species abundance and soil properties, also segregating the sites.