972 resultados para photosynthetic acclimation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

研究了黄土丘陵区引种草种柳枝稷 ( Panicum virgatum)的光合生理生态特性 ,比较了不同叶位叶片光合速率 ( Pn)、蒸腾速率 ( Tr)、水分利用效率 ( WUE)的日变化以及环境因子的作用。结果表明 ,柳枝稷叶片 Pn日变化曲线为双峰型 ,中午“光合降低”主要是由于叶温过高导致呼吸高引起的净光合速率降低。叶龄增大 ,叶片 Pn日变化相对较平缓 ,其中壮龄叶Pn日变化最为平缓。幼龄叶 Tr的日变化为双峰型 ,随叶龄增大 (叶位下降 )而成为单峰型。WUE的日变化可划分为上午的降低和下午的波动 2个阶段 ,最上充分展开叶 (旗叶 )的WUE始终最高。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

利用田间小区试验研究了不同灌水对冬小麦旗叶光合功能衰退的影响。研究表明 :小麦旗叶光合衰退初期引起光合下降的原因主要是气孔限制 ,后期则为非气孔限制。灌水可提高旗叶光合速率 ,并使由气孔限制向非气孔转变的时间推后 ,同时 ,还可增加叶绿素含量 ,增强根活力 ,使小麦旗叶光合功能持续期延长。过量灌水改善旗叶光合衰退的效果主要表现在后期 ,对产量提高的意义并不大。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

为揭示低温下光照对黄瓜光合作用的影响,在叶片水平对5℃ 100μmolm·-’·s-1和5℃黑暗处理4h后黄瓜叶片光合-光响应和光合-CO2响应进行了对比研究、结果表明,5℃黑暗处理4h使黄瓜叶片光饱和光合速率、表观光量子效率、CO2饱和光合速率以及梭化效率分别降低 22.5%、28.0%、31.3%和 37.2%,5℃ 100μmol·m-2·s-1使上述指标分别降低 56.1%、61.0%、54.0%和 54.3%,说明 100μmol·m-2·s-1光照明显加剧5℃低温对黄瓜叶片光合功能的伤害。进一步研究结果显示低温光照处理使黄瓜叶片 PSⅡ光合中心受到较严重的光抑制,类囊体跨膜质子梯度显著降低。对低温下光照对黄瓜叶片光合作用具有不良作用的原因进行了讨论。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

对黄土高原子午岭次生林区白桦林、辽东栎林和白桦-辽东栎混交林3种林分的土壤物理特性和叶片光合特性进行了研究。结果表明:(1)白桦-辽东栎混交林地的土壤水分明显改善,其土壤容重最小、土壤孔隙度最大,且均优于纯林,即混交林地有深层次的土壤水分可供利用,并改善了土壤的物理结构;(2)辽东栎林的光合速率和气孔导度最大,其次为白桦-辽东栎混交林,水分利用率(WUE)为混交林白桦>混交林辽东栎>辽东栎林>白桦林;(3)混交林中白桦、辽东栎的Fv/Fm和Fv/Fo值均较大,与纯林差异不显著;白桦林和辽东栎林的qP和NPQ值均大于混交林。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

田间试验研究不施N和施N(90kg/hm2)条件下“NR9405”、“9430”、“偃师9号”、“小偃6号”、“陕229”、“西农2208”、“矮丰3号”和“商188”等8种不同基因型冬小麦中后期生理特性及其叶片形态的差异结果表明,抽穗期倒二叶和灌浆期旗叶的净光合速率、气孔导度、蒸腾速率及瞬时水分利用效率在不同基因型间存在显著差异,施N仅能显著降低抽穗期倒二叶的蒸腾速率,而对功能叶的其他生理指标无明显影响。小麦成熟期旗叶和倒二叶的长度、宽度及叶面积在不同基因型间也存在极显著差异,施N对这些叶片形态指标有极显著地促进作用,基因型和N肥同时影响灌浆期旗叶的SPAD值,而叶片衰老指数主要受基因型调控。总体上看,冬小麦叶片形态指标同时受施N和基因型影响,而生理指标主要受基因型影响,N肥的影响相对较小。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Potted seadlings of Pinus koraiensis , Fraxinus mandshurica,Juglans mandshurica,Tilia amurensis, and Quercus mongolica ,which are five dominant species in the Korean pine broadleaf forest at Changbai mountain,were grown in different soil moistures.We designed three soil moisture scenarios:85%~100%(high water,CK),65%~85% (medium water,MW) and 45%~65% (low water,LW) of field water holding capacity.The results show that characteristics of typical drought resistance on the leaves are significantly developed.The net photosynthetic rate and water use efficiency of F. mandshurica were higher compared with CK at MW.The net photosynthetic rate and water use efficiency of other 4 tree species at CK were lower than those at MW and LW.The transpiration rate of 5 tree species responses differently to various soil water status.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Afforestation in China's subtropics plays an important role in sequestering CO2 from the atmosphere and in storage of soil carbon (C). Compared with natural forests, plantation forests have lower soil organic carbon (SOC) content and great potential to store more C. To better evaluate the effects of afforestation on soil C turnover, we investigated SOC and its stable C isotope (delta C-13) composition in three planted forests at Qianyanzhou Ecological Experimental Station in southern China. Litter and soil samples were collected and analyzed for total organic C, delta C-13 and total nitrogen. Similarly to the vertical distribution of SOC in natural forests, SOC concentrations decrease exponentially with depth. The land cover type (grassland) before plantation had a significant influence on the vertical distribution of SOC. The SOC delta C-13 composition of the upper soil layer of two plantation forests has been mainly affected by the grass biomass C-13 composition. Soil profiles with a change in photosynthetic pathway had a more complex C-13 isotope composition distribution. During the 20 years after plantation establishment, the soil organic matter sources influenced both the delta C-13 distribution with depth, and C replacement. The upper soil layer SOC turnover in masson pine (a mean 34% of replacement in the 10 cm after 20 years) was more than twice as fast as that of slash pine (16% of replacement) under subtropical conditions. The results demonstrate that masson pine and slash pine plantations cannot rapidly sequester SOC into long-term storage pools in subtropical China.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using meteorological data and RS dynamic land-use observation data set, the potential land productivity that is limited by solar radiation and temperature is estimated and the impacts of recent LUCC processes on it are analyzed in this paper. The results show that the influence of LUCC processes on potential land productivity change has extensive and unbalanced characteristics. It generally reduces the productivity in South China and increases it in North China, and the overall effect is increasing the total productivity by 26.22 million tons. The farmland reclamation and original farmlands losses are the primary causes that led potential land productivity to change. The reclamation mostly distributed in arable-pasture and arable-forest transitional zones and oasises in northwestern China has made total productivity increase by 83.35 million tons, accounting for 3.50% of the overall output. The losses of original farmlands driven by built-up areas invading and occupying arable land are mostly distributed in the regions which have rapid economic development, e.g. Huang-Huai-Hai plain, Yangtze River delta, Zhujiang delta, central part of Gansu, southeast coastal region, southeast of Sichuan Basin and Urumqi-Shihezi. It has led the total productivity to decrease 57.13 million tons, which is 2.40% of the overall output.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plant traits and individual plant biomass allocation of 57 perennial herbaceous species, belonging to three common functional groups (forbs, grasses and sedges) at subalpine (3700 m ASL), alpine (4300 m ASL) and subnival (>= 5000 m ASL) sites were examined to test the hypothesis that at high altitudes, plants reduce the proportion of aboveground parts and allocate more biomass to belowground parts, especially storage organs, as altitude increases, so as to geminate and resist environmental stress. However, results indicate that some divergence in biomass allocation exists among organs. With increasing altitude, the mean fractions of total biomass allocated to aboveground parts decreased. The mean fractions of total biomass allocation to storage organs at the subalpine site (7%+/- 2% S.E.) were distinct from those at the alpine (23%+/- 6%) and subnival (21%+/- 6%) sites, while the proportions of green leaves at all altitudes remained almost constant. At 4300 m and 5000 m, the mean fractions of flower stems decreased by 45% and 41%, respectively, while fine roots increased by 86% and 102%, respectively. Specific leaf areas and leaf areas of forbs and grasses deceased with rising elevation, while sedges showed opposite trends. For all three functional groups, leaf area ratio and leaf area root mass ratio decreased, while fine root biomass increased at higher altitudes. Biomass allocation patterns of alpine plants were characterized by a reduction in aboveground reproductive organs and enlargement of fine roots, while the proportion of leaves remained stable. It was beneficial for high altitude plants to compensate carbon gain and nutrient uptake under low temperature and limited nutrients by stabilizing biomass investment to photosynthetic structures and increasing the absorption surface area of fine roots. In contrast to forbs and grasses that had high mycorrhizal infection, sedges had higher single leaf area and more root fraction, especially fine roots.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Porphyra yezoensis Ueda is an important marine aquaculture crop with single-layered gametophytic thalli. In this work, the influences of thallus dehydration level, cold-preservation (freezing) time, and thawing temperature on the photosynthetic recovery of young P. yezoensis thalli were investigated employing an imaging pulse-amplitude-modulation (PAM) fluorometer. The results showed that after 40 d of frozen storage when performing thallus thawing under 10 degrees C, the water content of the thalli showed obvious effects on the photosynthetic recovery of the frozen thalli. The thalli with absolute water content (AWC) of 10%-40% manifested obvious superiority compared to the thalli with other AWCs, while the thalli thawed at 20 degrees C showed very high survival rate (93.10%) and no obvious correlation between thallus AWCs and thallus viabilities. These results indicated that inappropriate thallus water content contributed to the cell damage during the freeze-thaw cycle and that proper thawing temperature is very crucial. Therefore, AWC between 10% and 40% is the suitable thallus water content range for frozen storage, and the thawing process should be as short as possible. However, it is also shown that for short-term cold storage the Porphyra thallus water content also showed no obvious effect on the photosynthetic recovery of the thalli, and the survival rate was extremely high (100%). These results indicated that freezing time is also a paramount contributor of the cell damage during the freeze-thaw cycle. Therefore, the frozen nets should be used as soon as time permits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The population of Undaria pinnatifida in its ecologic niche sustains itself in high temperature summer in the form of vegetative gametophytes, the haploid stage in its heteromorphic life cycle. Gametogenesis initiates when seawater temperature drops below the threshold levels in autumn in the northern hemisphere. Given that the temperature may fall into the appropriate range for gametogenesis, the level of irradiance determines the final destiny of a gametophytic cell, either undergoing vegetative cell division or initiating gametogenesis. In elucidating how vegetatively propagated gametophytes cope with changes of irradiance in gametogenesis, we carried out a series of culture experiments and found that a direct exposure to irradiance as high as 270 mu mol photons m(-2) s(-1) was lethal to dim-light (7-10 mu mol photons m(-2) s(-1)) adapted male and female gametophytes. This lethal effect was linearly corelated with the exposure time. However, dim-light adapted vegetative gametophytes were shown to be able tolerate as high as 420 mu mol photons m(-2) s(-1) if the irradiance was steadily increased from dim light levels (7-10 mu mol photons m(-2) s(-1)) to 90, 180 and finally 420 mu mol photons m(-2) s(-1), respectively, at a minimum of 1-3 h intervals. Percentage of female gametophytic cells that turned into oogonia and were eventually fertilized was significantly higher if cultured at higher but not lethal irradiances. Findings of this investigation help to understand the dynamic changes of population size of sporophytic plants under different light climates at different site-specific ecologic niches. It may help to establish specific technical details of manipulation of light during mass production of seedlings by use of vegetatively propagated gametophytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The photosynthetic oxygen evolution of Caulerpa serrulata was determined with oxygen electrodes. The effects of light and temperature on the growth and regeneration of fragmented C. serrulata thalli were analyzed. The regenerating rate and establishment of different sizes and portions of C. serrulata were studied. The results showed that the light saturation point of C. serrulata was 200 mu mol photons/m(2) per s and the optimum growth temperature was 25-30 degrees C. Under these conditions, the maximum photosynthetic oxygen evolution rate was 15.1 +/- 0.29 mg O-2/mg Chl a/h, the growth rate and elongation rate reached the highest values, 4.67 +/- 0.09 mg FW/d and 0.78 +/- 0.01 mm/d, respectively. The fragmented C. serrulata thalli was regenerated at 20-35 degrees C and survived at 15 degrees C and 200 mu mol photons/m(2) per s. A different survival rate was detected according to fragment size. All of these results indicated that C. serrulata was a candidate to become an invasive species if introduced into a new place. Therefore, we should pay more attention to C. serrulata for its potential threat to marine ecosystem when it is sold for aquarium use.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The psychrotrophic Antarctic alga, Chlorella vulgaris NJ-7, grows under an extreme environment of low temperature and high salinity. In an effort to better understand the correlation between fatty acid metabolism and acclimation to Antarctic environment, we analyzed its fatty acid compositions. An extremely high amount of Delta(12) unsaturated fatty acids was identified which prompted us to speculate about the involvement of Delta(12) fatty acid desaturase in the process of acclimation. A full-length cDNA sequence, designated CvFAD2, was isolated from C. vulgaris NJ-7 via reverse transcription polymerase chain reaction (RT-PCR) and RACE methods. Sequence alignment and phylogenetic analysis showed that the gene was homologous to known microsomal Delta(12)-FADs with the conserved histidine motifs. Heterologous expression in yeast was used to confirm the regioselectivity and the function of CvFAD2. Linoleic acid (18:2), normally not present in wild-type yeast cells, was detected in transformants of CvFAD2. The induction of CvFAD2 at an mRNA level under cold stress and high salinity is detected by real-time PCR. The results showed that both temperature and salinity motivated the upregulation of CvFAD2 expression. The accumulation of CvFAD2 increased 2.2-fold at 15A degrees C and 3.9-fold at 4A degrees C compared to the alga at 25A degrees C. Meanwhile a 1.7- and 8.5-fold increase at 3 and 6% NaCl was detected. These data suggest that CvFAD2 is the enzyme responsible for the Delta(12) fatty acids desaturation involved in the adaption to cold and high salinity for Antarctic C. vugaris NJ-7.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phycobiliprotein is a photosynthetic antenna pigment found in cyanobacteria, rhodophytes, cryptophytes and certain dinoflagellates, which has been found to have anti-oxidative and anti-tumour activities. In this paper, a recombinant allophycocyanin (rAPC) had been expressed in Escherichia coli for anti-tumour effect. E. coli cells were cultured using glucose fed-batch method to achieve high cell densities. The biomass of rAPC was up to 3.52 g/L broth. The rAPC was purified from soluble E. coli cell lysate employing hydrophobic interaction chromatographic (HIC) method developed at the bench scale using 20 mL column. The process was performed at the pilot scale using 500 mL column for evaluation of scale-up. An amylose affinity column was used to improve the purity of final product in pilot scale purification. The purification process resulted in greater than 98% pure product and yielded up to 2.0 g/kg wet cells at the bench scale and 1.2 g/kg wet cells at the pilot scale. Peptide mapping was used to prove the identity of rAPC purified from bench scale and pilot scale process. Purified rAPC at the pilot scale was found to have remarkable inhibition on S-180 carcinoma in mice. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The partial sequence of the rbcL from Bryopsis hypnoides, including the sequences of the upstream, extron and partial intron, was amplified by PCR and their sequences were determined. With Spinacia oleracea as the outgroup, neighbor-joining method and maximum parsimony method were used respectively to build phylogenetic trees according to the rbcL exon sequence among 13 species that were the typical species of six phyla. Two kinds of trees showed clearly that there were two groups among those species, the green lineage and the non-green lineage. And the relationships of algae in the green lineage were similar in the two trees but those in the non-green lineage were not consistent. Analysis of codon preference indicated that the codon preference of the rbcL exon of Bryopsis hypnoides distinctly differed from that of the relevant sequence of photosynthetic bacteria.