827 resultados para neuron
Resumo:
Exocytosis of transmitter at most synapses is a very fast process triggered by the entry of Ca2+ during an action potential. A reasonable expectation is that the fast step of exocytosis is followed by slow steps readying another vesicle for exocytosis but the identity and kinetics of these steps are presently unclear. By voltage clamping both pre- and postsynaptic neurons in an isolated pair of retinal amacrine cells, we have measured evoked synaptic currents and responses to single vesicles of transmitter (minis). From these currents, we have computed the rate of exocytosis during a sustained presynaptic depolarization. We show here that for these cells, release is consistent with a scheme of "fire and reload." Large Ca2+ influx causes the rapid release of a small number of vesicles, typically approximately 10 per presynaptic neuron, likely corresponding to those vesicles already docked. After this spike of exocytosis whose peak is 150 quanta per release site per s, continued Ca2+ influx sustains release at only 22 quanta per release site per s, probably rate-limited by the docking of fresh vesicles.
Resumo:
From an extract of Drosophila melanogaster head homogenates, a membrane fraction can be isolated that has the same sedimentation properties as vertebrate synaptic vesicles and contains Drosophila synaptotagmin. The fraction disappears from homogenates of temperature-sensitive (ts) mutant shibire(ts1) (shi(ts1)) flies paralyzed by exposure to non-permissive temperatures, and reappears on return to permissive temperatures. Since reversible, temperature-dependent depletion of synaptic vesicles is known to occur in shibire(ts1) flies, we conclude that the fraction we have identified contains synaptic vesicles. We have examined the fate of synaptic vesicle membrane proteins in shibire flies at nonpermissive temperatures and found that all of these vesicle antigens are transferred to rapidly sedimenting membranes and codistribute with a plasma membrane marker by both glycerol velocity and metrizamide density sedimentation and by confocal microscopy. Three criteria were used to establish that other neuron-specific antigens--neuronal synaptobrevin and cysteine-string proteins--are legitimate components of synaptic vesicles: cosedimentation with Drosophila synaptotagmin, immunoadsorption, and disappearance of these antigens from the vesicle fractions in paralyzed shibire flies.
Resumo:
Nerve growth cones isolated from fetal rat brain are highly enriched in a 97-kDa glycoprotein, termed beta gc, that comigrates with the beta subunit of the IGF-I receptor upon two-dimensional PAGE and is disulfide-linked to this receptor's alpha subunit. Antibodies prepared to a conserved domain shared by the insulin and IGF-I receptor beta subunits (AbP2) or to beta gc were used to study receptor distribution further. Subcellular fractionation of the fetal brain segregated most AbP2 immunoreactivity away from growth cones, whereas most beta gc immunoreactivity copurified with growth cones. Experiments involving ligand-activated receptor autophosphorylation confirmed the concentration of IGF-I but not of insulin receptors in growth cone fractions. These results indicate the enrichment of IGF-I receptors in (presumably axonal) growth cones of the differentiating neuron. Furthermore, the segregation of beta gc from AbP2 immunoreactivity suggests that such neurons express an immunochemically distinct variant of the IGF-I receptor beta subunit at the growth cone.
Resumo:
The bcl-2 protooncogene, which protects various cell types from apoptotic cell death, is expressed in the developing and adult nervous system. To explore its role in regulation of neuronal cell death, we generated transgenic mice expressing Bcl-2 under the control of the neuron-specific enolase promoter, which forced expression uniquely in neurons. Sensory neurons isolated from dorsal root ganglia of newborn mice normally require nerve growth factor for their survival in culture, but those from the bcl-2 transgenic mice showed enhanced survival in its absence. Furthermore, apoptotic death of motor neurons after axotomy of the sciatic nerve was inhibited in these mice. The number of neurons in two neuronal populations from the central and peripheral nervous system was increased by 30%, indicating that Bcl-2 expression can protect neurons from cell death during development. The generation of these transgenic mice suggests that Bcl-2 may play an important role in survival of neurons both during development and throughout adult life.
Resumo:
Voltage- and ligand-activated channels in embryonic neurons containing luteinizing hormone-releasing hormone (LHRH) were studied by patch-pipette, whole-cell current and voltage clamp techniques. LHRH neurons were maintained in explant cultures derived from olfactory pit regions of embryonic mice. Cells were marked intracellularly with Lucifer yellow following recording. Sixty-two cells were unequivocally identified as LHRH neurons by Lucifer yellow and LHRH immunocytochemistry. The cultured LHRH neurons had resting potentials around -50 mV, exhibited spontaneous discharges generated by intrinsic and/or synaptic activities and contained a time-dependent inward rectifier (Iir). Voltage clamp analysis of ionic currents in the LHRH neuron soma revealed a tetrodotoxin-sensitive Na+ current (INa) and two major types of K+ currents, a transient current (IA), a delayed rectifier current (IK) and low- and high-voltage-activated Ca2+ currents. Spontaneous depolarizing synaptic potentials and depolarizations induced by direct application of gamma-aminobutyrate were both inhibited by picrotoxin or bicuculline, demonstrating the presence of functional gamma-aminobutyrate type A synapses on these neurons. Responses to glutamate were found in LHRH neurons in older cultures. Thus, embryonic LHRH neurons not yet positioned in their postnatal environment in the forebrain contained a highly differentiated repertoire of voltage- and ligand-gated channels.
Resumo:
A aquisição experimental de sinais neuronais é um dos principais avanços da neurociência. Por meio de observações da corrente e do potencial elétricos em uma região cerebral, é possível entender os processos fisiológicos envolvidos na geração do potencial de ação, e produzir modelos matemáticos capazes de simular o comportamento de uma célula neuronal. Uma prática comum nesse tipo de experimento é obter leituras a partir de um arranjo de eletrodos posicionado em um meio compartilhado por diversos neurônios, o que resulta em uma mistura de sinais neuronais em uma mesma série temporal. Este trabalho propõe um modelo linear de tempo discreto para o sinal produzido durante o disparo do neurônio. Os coeficientes desse modelo são calculados utilizando-se amostras reais dos sinais neuronais obtidas in vivo. O processo de modelagem concebido emprega técnicas de identificação de sistemas e processamento de sinais, e é dissociado de considerações sobre o funcionamento biofísico da célula, fornecendo uma alternativa de baixa complexidade para a modelagem do disparo neuronal. Além disso, a representação por meio de sistemas lineares permite idealizar um sistema inverso, cuja função é recuperar o sinal original de cada neurônio ativo em uma mistura extracelular. Nesse contexto, são discutidas algumas soluções baseadas em filtros adaptativos para a simulação do sistema inverso, introduzindo uma nova abordagem para o problema de separação de spikes neuronais.
Resumo:
Rotenone is a widely used pesticide and a potent inhibitor of mitochondrial complex I (NADH-quinone reductase) that elicits the degeneration of dopaminergic neurons and thereby the appearance of a parkinsonian syndrome. Here we have addressed the alterations induced by rotenone at the functional, morphological and molecular levels in the retina, including those involving both dopaminergic and non-dopaminergic retinal neurons. Rotenone-treated rats showed abnormalities in equilibrium, postural instability and involuntary movements. In their outer retina we observed a loss of photoreceptors, and a reduced synaptic connectivity between those remaining and their postsynaptic neurons. A dramatic loss of mitochondria was observed in the inner segments, as well as in the axon terminals of photoreceptors. In the inner retina we observed a decrease in the expression of dopaminergic cell molecular markers, including loss of tyrosine hydroxylase immunoreactivity, associated with a reduction of the dopaminergic plexus and cell bodies. An increase in immunoreactivity of AII amacrine cells for parvalbumin, a Ca2+-scavenging protein, was also detected. These abnormalities were accompanied by a decrease in the amplitude of scotopic and photopic a- and b-waves and an increase in the b-wave implicit time, as well as by a lower amplitude and greater latency in oscillatory potentials. These results indicate that rotenone induces loss of vision by promoting photoreceptor cell death and impairment of the dopaminergic retinal system.
Resumo:
A new classification of microtidal sand and gravel beaches with very different morphologies is presented below. In 557 studied transects, 14 variables were used. Among the variables to be emphasized is the depth of the Posidonia oceanica. The classification was performed for 9 types of beaches: Type 1: Sand and gravel beaches, Type 2: Sand and gravel separated beaches, Type 3: Gravel and sand beaches, Type 4: Gravel and sand separated beaches, Type 5: Pure gravel beaches, Type 6: Open sand beaches, Type 7: Supported sand beaches, Type 8: Bisupported sand beaches and Type 9: Enclosed beaches. For the classification, several tools were used: discriminant analysis, neural networks and Support Vector Machines (SVM), the results were then compared. As there is no theory for deciding which is the most convenient neural network architecture to deal with a particular data set, an experimental study was performed with different numbers of neuron in the hidden layer. Finally, an architecture with 30 neurons was chosen. Different kernels were employed for SVM (Linear, Polynomial, Radial basis function and Sigmoid). The results obtained for the discriminant analysis were not as good as those obtained for the other two methods (ANN and SVM) which showed similar success.
Resumo:
In this work, a modified version of the elastic bunch graph matching (EBGM) algorithm for face recognition is introduced. First, faces are detected by using a fuzzy skin detector based on the RGB color space. Then, the fiducial points for the facial graph are extracted automatically by adjusting a grid of points to the result of an edge detector. After that, the position of the nodes, their relation with their neighbors and their Gabor jets are calculated in order to obtain the feature vector defining each face. A self-organizing map (SOM) framework is shown afterwards. Thus, the calculation of the winning neuron and the recognition process are performed by using a similarity function that takes into account both the geometric and texture information of the facial graph. The set of experiments carried out for our SOM-EBGM method shows the accuracy of our proposal when compared with other state-of the-art methods.
Resumo:
Locomotor recovery from anoxia is complicated and little is known about the molecular and cellular mechanisms regulating anoxic recovery in Drosophila. For this thesis I established a protocol for large-scale analysis of locomotor activity in adult flies with exposure to a transient anoxia. Using this protocol I observed that wild-type Canton-S flies recovered faster and more consistently from anoxia than the white-eyed mutant w1118, which carries a null allele of w1118 in an isogenic genetic background. Both Canton-S and w1118 are commonly used controls in the Drosophila community. Genetic analysis including serial backcrossing, RNAi knockdown, w+ duplication to Y chromosome as well as gene mutation revealed a strong association between the white gene and the timing of locomotor recovery. I also found that the locomotor recovery phenotype is independent of white-associated eye pigmentation, that heterozygous w+ allele was haplo-insufficient to induce fast and consistent locomotor recovery from anoxia in female flies, and that mini-white is insufficient to promote fast and consistent locomotor recovery. Moreover, locomotor recovery was delayed in flies with RNAi knockdown of white in subsets of serotonin neurons in the central nervous system. I further demonstrated that mutations of phosphodiesterase genes (PDE) displayed wild-type-like fast and consistent locomotor recovery, and that locomotor recovery was light-sensitive in the night in w1118. The delayed locomotor recovery and the light sensitivity were eliminated in PDE mutants that were dual-specific or cyclic guanosine monophosphate (cGMP)-specific. Up-regulation of cGMP using multiple approaches including PDE mutation, sildenafil feeding or specific expression of an atypical soluble guanylyl cyclase (Gyc88E) was sufficient to suppress w-RNAi induced delay of locomotor recovery. Taken together, these data strongly support the hypothesis that White transports cGMP and promotes fast and consistent locomotor recovery from anoxia.
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014
Resumo:
The fruit fly, Drosophila melanogaster, is one of the most extensively studied organisms in biological research and has centrioles/basal bodies and cilia that can be modelled to investigate their functions in animals generally. Centrioles are nine-fold symmetrical microtubule-based cylindrical structures required to form centrosomes and also to nucleate the formation of cilia and flagella. When they function to template cilia, centrioles transition into basal bodies. The fruit fly has various types of basal bodies and cilia, which are needed for sensory neuron and sperm function. Genetics, cell biology and behaviour studies in the fruit fly have unveiled new basal body components and revealed different modes of assembly and functions of basal bodies that are conserved in many other organisms, including human, green algae and plasmodium. Here we describe the various basal bodies of Drosophila, what is known about their composition, structure and function.
Resumo:
Fused in sarcoma (FUS) is a ubiquitously expressed RNA-binding protein proposed to function in various RNA metabolic pathways, including transcription regulation, pre-mRNA splicing, RNA transport and microRNA processing. Mutations in the FUS gene were identified in patients with amyotrophic lateral sclerosis (ALS), but the pathomechanisms by which these mutations cause ALS are not known. Here, we show that FUS interacts with the minor spliceosome constituent U11 snRNP, binds preferentially to minor introns and directly regulates their removal. Furthermore, a FUS knockout in neuroblastoma cells strongly disturbs the splicing of minor intron-containing mRNAs, among them mRNAs required for action potential transmission and for functional spinal motor units. Moreover, an ALS-associated FUS mutant that forms cytoplasmic aggregates inhibits splicing of minor introns by trapping U11 and U12 snRNAs in these aggregates. Collectively, our findings suggest a possible pathomechanism for ALS in which mutated FUS inhibits correct splicing of minor introns in mRNAs encoding proteins required for motor neuron survival.