923 resultados para human equilibrative nucleoside transporter 1 (hENT1)
Resumo:
T-cell based vaccines against human immunodeficiency virus (HIV) generate specific responses that may limit both transmission and disease progression by controlling viral load. Broad, polyfunctional, and cytotoxic CD4+T-cell responses have been associated with control of simian immunodeficiency virus/HIV-1 replication, supporting the inclusion of CD4+ T-cell epitopes in vaccine formulations. Plasmid-encoded granulocyte-macrophage colony-stimulating factor (pGM-CSF) co-administration has been shown to induce potent CD4+ T-cell responses and to promote accelerated priming and increased migration of antigen-specific CD4+ T-cells. However, no study has shown whether co-immunisation with pGM-CSF enhances the number of vaccine-induced polyfunctional CD4+ T-cells. Our group has previously developed a DNA vaccine encoding conserved, multiple human leukocyte antigen (HLA)-DR binding HIV-1 subtype B peptides, which elicited broad, polyfunctional and long-lived CD4+ T-cell responses. Here, we show that pGM-CSF co-immunisation improved both magnitude and quality of vaccine-induced T-cell responses, particularly by increasing proliferating CD4+ T-cells that produce simultaneously interferon-γ, tumour necrosis factor-α and interleukin-2. Thus, we believe that the use of pGM-CSF may be helpful for vaccine strategies focused on the activation of anti-HIV CD4+ T-cell immunity.
Resumo:
Mitochondrial impairment is hypothesized to contribute to the pathogenesis of insulin resistance. Mitofusin (Mfn) proteins regulate the biogenesis and maintenance of the mitochondrial network, and when inactivated, cause a failure in the mitochondrial architecture and decreases in oxidative capacity and glucose oxidation. Exercise increases muscle mitochondrial content, size, oxidative capacity and aerobic glucose oxidation. To address if Mfn proteins are implicated in these exercise-induced responses, we measured Mfn1 and Mfn2 mRNA levels, pre-, post-, 2 and 24 h post-exercise. Additionally, we measured the expression levels of transcriptional regulators that control mitochondrial biogenesis and functions, including PGC-1alpha, NRF-1, NRF-2 and the recently implicated ERRalpha. We show that Mfn1, Mfn2, NRF-2 and COX IV mRNA were increased 24 h post-exercise, while PGC-1alpha and ERRalpha mRNA increased 2 h post-exercise. Finally, using in vitro cellular assays, we demonstrate that Mfn2 gene expression is driven by a PGC-1alpha programme dependent on ERRalpha. The PGC-1alpha/ERRalpha-mediated induction of Mfn2 suggests a role of these two factors in mitochondrial fusion. Our results provide evidence that PGC-1alpha not only mediates the increased expression of oxidative phosphorylation genes but also mediates alterations in mitochondrial architecture in response to aerobic exercise in humans
Resumo:
The recently released Affymetrix Human Gene 1.0 ST array has two major differences compared with standard 3' based arrays: (i) it interrogates the entire mRNA transcript, and (ii) it uses DNA targets. To assess the impact of these differences on array performance, we performed a series of comparative hybridizations between the Human Gene 1.0 ST and the Affymetrix HG-U133 Plus 2.0 and the Illumina HumanRef-8 BeadChip arrays. Additionally, both RNA and DNA targets were hybridized on HG-U133 Plus 2.0 arrays. The results show that the overall reproducibility of the Gene 1.0 ST array is best. When looking only at the high intensity probes, the reproducibility of the Gene 1.0 ST array and the Illumina BeadChip array is equally good. Concordance of array results was assessed using different inter-platform mappings. Agreements are best between the two labeling protocols using HG-U133 Plus 2.0 array. The Gene 1.0 ST array is most concordant with the HG-U133 array hybridized with cDNA targets. This may reflect the impact of the target type. Overall, the high degree of correspondence provides strong evidence for the reliability of the Gene 1.0 ST array.
Resumo:
Islet-brain 1 (IB1) is the human and rat homologue of JIP-1, a scaffold protein interacting with the c-Jun amino-terminal kinase (JNK). IB1 expression is mostly restricted to the endocrine pancreas and to the central nervous system. Herein, we explored the transcriptional mechanism responsible for this preferential islet and neuronal expression of IB1. A 731-bp fragment of the 5' regulatory region of the human MAPK8IP1 gene was isolated from a human BAC library and cloned upstream of a luciferase reporter gene. This construct drove high transcriptional activity in both insulin-secreting and neuron-like cells but not in unrelated cell lines. Sequence analysis of this promoter region revealed the presence of a neuron-restrictive silencer element (NRSE) known to bind repressor zinc finger protein REST. This factor is not expressed in insulin-secreting and neuron-like cells. By mobility shift assay, we confirmed that REST binds to the NRSE present in the IB1 promoter. Once transiently transfected in beta-cell lines, the expression vector encoding REST repressed IB1 transcriptional activity. The introduction of a mutated NRSE in the 5' regulating region of the IB1 gene abolished the repression activity driven by REST in insulin-secreting beta cells and relieved the low transcriptional activity of IB1 observed in unrelated cells. Moreover, transfection in non-beta and nonneuronal cell lines of an expression vector encoding REST lacking its transcriptional repression domain relieved IB1 promoter activity. Last, the REST-mediated repression of IB1 could be abolished by trichostatin A, indicating that deacetylase activity is required to allow REST repression. Taken together, these data establish a critical role for REST in the control of the tissue-specific expression of the human IB1 gene.
Resumo:
State Agency Audit Report - Special Investigation
Resumo:
Although previous studies have suggested an increased activation of humoral immunity in neurodegenerative diseases, it remains unclear whether this phenomenon is secondary to lesion formation or contributes directly to their development. Using stereotaxic injections in macaque monkey cerebral cortex, we studied the effects of human immunoglobulins on the neuronal cytoskeleton. Under these conditions, several MC-1-immunoreactive axons were observed in the vicinity of injection site. No MC-1 or TG-3 staining was detected in neuronal soma. Ultrastructurally, several axons in the same area displayed curly formations and accumulation of twisted tubules but not paired helical filaments. These data suggest that Fc fragment induce conformational changes of tau and subtle structural alterations in axons in this model. Immunocytochemical analyses in human autopsy materials revealed the presence of human Fc fragments as well as Fc receptors only in large pyramidal neurons known to be vulnerable in brain aging and Alzheimer's disease, further supporting a possible role of immunoglobulins in neurodegeneration.
Resumo:
Background: The human chromosome 8p23.1 region contains a 3.8–4.5 Mb segment which can be found in different orientations (defined as genomic inversion) among individuals. The identification of single nucleotide polymorphisms (SNPs) tightly linked to the genomic orientation of a given region should be useful to indirectly evaluate the genotypes of large genomic orientations in the individuals. Results: We have identified 16 SNPs, which are in linkage disequilibrium (LD) with the 8p23.1 inversion as detected by fluorescent in situ hybridization (FISH). The variability of the 8p23.1 orientation in 150 HapMap samples was predicted using this set of SNPs and was verified by FISH in a subset of samples. Four genes (NEIL2, MSRA, CTSB and BLK) were found differentially expressed (p<0.0005) according to the orientation of the 8p23.1 region. Finally, we have found variable levels of mosaicism for the orientation of the 8p23.1 as determined by FISH. Conclusion: By means of dense SNP genotyping of the region, haplotype-based computational analyses and FISH experiments we could infer and verify the orientation status of alleles in the 8p23.1 region by detecting two short haplotype stretches at both ends of the inverted region, which are likely the relic of the chromosome in which the original inversion occurred. Moreover, an impact of 8p23.1 inversion on gene expression levels cannot be ruled out, since four genes from this region have statistically significant different expression levels depending on the inversion status. FISH results in lymphoblastoid cell lines suggest the presence of mosaicism regarding the 8p23.1 inversion.
Resumo:
UEV proteins are enzymatically inactive variants of the E2 ubiquitin-conjugating enzymes that regulate noncanonical elongation of ubiquitin chains. In Saccharomyces cerevisiae, UEV is part of the RAD6-mediated error-free DNA repair pathway. In mammalian cells, UEV proteins can modulate c-FOS transcription and the G2-M transition of the cell cycle. Here we show that the UEV genes from phylogenetically distant organisms present a remarkable conservation in their exon–intron structure. We also show that the human UEV1 gene is fused with the previously unknown gene Kua. In Caenorhabditis elegans and Drosophila melanogaster, Kua and UEV are in separated loci, and are expressed as independent transcripts and proteins. In humans, Kua and UEV1 are adjacent genes, expressed either as separate transcripts encoding independent Kua and UEV1 proteins, or as a hybrid Kua–UEV transcript, encoding a two-domain protein. Kua proteins represent a novel class of conserved proteins with juxtamembrane histidine-rich motifs. Experiments with epitope-tagged proteins show that UEV1A is a nuclear protein, whereas both Kua and Kua–UEV localize to cytoplasmic structures, indicating that the Kua domain determines the cytoplasmic localization of Kua–UEV. Therefore, the addition of a Kua domain to UEV in the fused Kua–UEV protein confers new biological properties to this regulator of variant polyubiquitination.[Kua cDNAs isolated by RT-PCR and described in this paper have been deposited in the GenBank data library under accession nos. AF1155120 (H. sapiens) and AF152361 (D. melanogaster). Genomic clones containing UEV genes: S. cerevisiae, YGL087c (accession no. Z72609); S. pombe, c338 (accession no. AL023781); P. falciparum, MAL3P2 (accession no. AL034558); A. thaliana, F26F24 (accession no. AC005292); C. elegans, F39B2 (accession no. Z92834); D. melanogaster, AC014908; and H. sapiens, 1185N5 (accession no. AL034423). Accession numbers for Kua cDNAs in GenBank dbEST: M. musculus, AA7853; T. cruzi, AI612534. Other Kua-containing sequences: A. thaliana genomic clones F10M23 (accession no. AL035440), F19K23 (accession no. AC000375), and T20K9 (accession no. AC004786).
Resumo:
BACKGROUND & AIMS: In the last decade, pegylated interferon-α (PegIFN-α) plus ribavirin (RBV) was the standard treatment of chronic hepatitis C for genotype 1, and it remains the standard for genotypes 2 and 3. Recent studies reported associations between RBV-induced anemia and genetic polymorphisms of concentrative nucleoside transporters such as CNT3 (encoded by SLC28A3) and inosine triphosphatase (encoded by ITPA). We aimed at studying genetic determinants of RBV kinetics, efficacy and treatment-associated anemia. METHODS: We included 216 patients from two Swiss study cohorts (61% HCV genotype 1, 39% genotypes 2 or 3). Patients were analyzed for SLC28A2 single nucleotide polymorphism (SNP) rs11854484, SLC28A3 rs56350726, and SLC28A3 rs10868138 as well as ITPA SNPs rs1127354 and rs7270101, and followed for treatment-associated hemoglobin changes and sustained virological response (SVR). In 67 patients, RBV serum levels were additionally measured during treatment. RESULTS: Patients with SLC28A2 rs11854484 genotype TT had higher dosage- and body weight-adjusted RBV levels than those with genotypes TC or CC (p=0.02 and p=0.06 at weeks 4 and 8, respectively). ITPA SNP rs1127354 was associated with hemoglobin drop ≥3 g/dl during treatment, in genotype (relative risk (RR)=2.1, 95% CI 1.3-3.5) as well as allelic analyses (RR=2.0, 95%CI 1.2-3.4). SLC28A3 rs56350726 was associated with SVR in genotype (RR=2.2; 95% CI 1.1-4.3) as well as allelic analyses (RR=2.0, 95% CI 1.1-3.4). CONCLUSIONS: The newly identified association between RBV serum levels and SLC28A2 rs11854484 genotype, as well as the replicated association of ITPA and SLC28A3 genetic polymorphisms with RBV-induced anemia and treatment response, may support individualized treatment of chronic hepatitis C and warrant further investigation in larger studies.
Resumo:
BACKGROUND AND PROCEDURE: To determine the possible role of Fas/FasL system in the particularly heterogeneous behaviour of neuroblastoma (NB), we have measured the functional expression of Fas and its ligand, FasL, in primary neuroblastoma samples and cell lines by immunohistochemistry and flow cytometry. RESULTS: Our results reveal that while Fas expression is associated with low stage and more mature tumors, heterogeneous FasL expression was mostly detected in high stage tumors, with our apparent correlation to MYCN amplification. Flow cytometric analysis of cell lines demonstrated a high expression of Fas in epithelial-type, HLA class I positive cell lines, which was lost upon activation with phorbol esters. In contrast, Fas ligand was detected in only a small subset of cell lines. CONCLUSIONS: In some cell lines, cytotoxic assays revealed the ability of NB-associated Fas receptor to transduce an apoptotic signal upon triggering. The pattern of functional Fas/FasL expression in tumours and cell lines suggests that this system may be involved in the evasion of highly malignant neuroblastoma cells to host immune response.
Resumo:
We have reported the identification of human gene MAGE-1, which directs the expression of an antigen recognized on a melanoma by autologous cytolytic T lymphocytes (CTL). We show here that CTL directed against this antigen, which was named MZ2-E, recognize a nonapeptide encoded by the third exon of gene MAGE-1. The CTL also recognize this peptide when it is presented by mouse cells transfected with an HLA-A1 gene, confirming the association of antigen MZ2-E with the HLA-A1 molecule. Other members of the MAGE gene family do not code for the same peptide, suggesting that only MAGE-1 produces the antigen recognized by the anti-MZ2-E CTL. Our results open the possibility of immunizing HLA-A1 patients whose tumor expresses MAGE-1 either with the antigenic peptide or with autologous antigen-presenting cells pulsed with the peptide.
Resumo:
BACKGROUND: Plasmid DNA vaccination is a promising approach, but studies in non-human primates and humans failed to achieve protective immunity. To optimise this technology further with focus on pulmonary administration, we developed and evaluated an adjuvant-equipped DNA carrier system based on the biopolymer chitosan. In more detail, the uptake and accompanying immune response of adjuvant Pam3Cys (Toll-like receptor-1/2 agonist) decorated chitosan DNA nanoparticles (NP) were explored by using a three-dimensional (3D) cell culture model of the human epithelial barrier. Pam3Cys functionalised and non-functionalised chitosan DNA NP were sprayed by a microsprayer onto the surface of 3D cell cultures and uptake of NP by epithelial and immune cells (blood monocyte-derived dendritic cells (MDDC) and macrophages (MDM)) was visualised by confocal laser scanning microscopy. In addition, immune activation by TLR pathway was monitored by analysis of interleukin-8 and tumor necrosis factor-α secretions (ELISA). RESULTS: At first, a high uptake rate into antigen-presenting cells (MDDC: 16-17%; MDM: 68-75%) was obtained. Although no significant difference in uptake patterns was observed for Pam3Cys adjuvant functionalised and non-functionalised DNA NP, ELISA of interleukin-8 and tumor necrosis factor-α demonstrated clearly that Pam3Cys functionalisation elicited an overall higher immune response with the ranking of Pam3Cys chitosan DNA NPâeuro0/00>âeuro0/00chitosan DNA NPâeuro0/00=âeuro0/00DNA unloaded chitosan NPâeuro0/00>âeuro0/00control (culture medium). CONCLUSIONS: Chitosan-based DNA delivery enables uptake into abluminal MDDC, which are the most immune competent cells in the human lung for the induction of antigen-specific immunity. In addition, Pam3Cys adjuvant functionalisation of chitosan DNA NP enhances significantly an environment favoring recruitment of immune cells together with a Th1 associated (cellular) immune response due to elevated IL-8 and TNF-α levels. The latter renders this DNA delivery approach attractive for potential DNA vaccination against intracellular pathogens in the lung (e.g., Mycobacterium tuberculosis or influenza virus).
Resumo:
PURPOSE: As compared with natural tumor peptide sequences, carefully selected analog peptides may be more immunogenic and thus better suited for vaccination. However, T cells in vivo activated by such altered analog peptides may not necessarily be tumor specific because sequence and structure of peptide analogs differ from corresponding natural peptides. EXPERIMENTAL DESIGN: Three melanoma patients were immunized with a Melan-A peptide analog that binds more strongly to HLA-A*0201 and is more immunogenic than the natural sequence. This peptide was injected together with a saponin-based adjuvant, followed by surgical removal of lymph node(s) draining the site of vaccination. RESULTS: Ex vivo analysis of vaccine site draining lymph nodes revealed antigen-specific CD8+ T cells, which had differentiated to memory cells. In vitro, these cells showed accelerated proliferation upon peptide stimulation. Nearly all (16 of 17) of Melan-A-specific CD8+ T-cell clones generated from these lymph nodes efficiently killed melanoma cells. CONCLUSIONS: Patient immunization with the analog peptide leads to in vivo activation of T cells that were specific for the natural tumor antigen, demonstrating the usefulness of the analog peptide for melanoma immunotherapy.
Resumo:
The synthesis of a photoreactive derivative of the human leukocyte antigen-A1 (HLA-A1)-restricted MAGE-1 peptide 161-169 (EADPTGHSY) is described. Using conventional automated solid-phase peptide synthesis, a photoreactive derivative of this peptide was synthesized by replacing histidine-167 with photo-reactive N-beta-4-azidosalicyloyl-L-2,3-diaminopropionic acid. The C-terminal tyrosine was incorporated as phosphotyrosine. This peptide derivative was radioiodinated in the presence of chloramine T. This iodination took place selectively at the photoreactive group, because the phosphate ester prevented tyrosine iodination. Following dephosphorylation with alkaline phosphatase and chromatographic purification, the radiolabeled peptide derivative was incubated with cells expressing HLA-A1 or other HLA molecules. Photoactivation resulted in efficient photoaffinity labeling of HLA-A1. Other HLA molecules or other cellular components were not detectably labeled. This labeling was inhibited by HLA-A1 but not by HLA-A2-binding peptides. This synthesis is generally applicable and can also be adapted to the synthesis of well-defined radiolabeled nonphotoreactive peptide derivatives.