797 resultados para health state classification system
Resumo:
ACM Computing Classification System (1998): G.2.2.
Resumo:
ACM Computing Classification System (1998): G.2.2, G.2.3.
Resumo:
ACM Computing Classification System (1998): J.3.
Resumo:
ACM Computing Classification System (1998): I.2.8, G.1.6.
Resumo:
This paper presents a Variable neighbourhood search (VNS) approach for solving the Maximum Set Splitting Problem (MSSP). The algorithm forms a system of neighborhoods based on changing the component for an increasing number of elements. An efficient local search procedure swaps the components of pairs of elements and yields a relatively short running time. Numerical experiments are performed on the instances known in the literature: minimum hitting set and Steiner triple systems. Computational results show that the proposed VNS achieves all optimal or best known solutions in short times. The experiments indicate that the VNS compares favorably with other methods previously used for solving the MSSP. ACM Computing Classification System (1998): I.2.8.
Resumo:
In this paper the low autocorrelation binary sequence problem (LABSP) is modeled as a mixed integer quadratic programming (MIQP) problem and proof of the model’s validity is given. Since the MIQP model is semidefinite, general optimization solvers can be used, and converge in a finite number of iterations. The experimental results show that IQP solvers, based on this MIQP formulation, are capable of optimally solving general/skew-symmetric LABSP instances of up to 30/51 elements in a moderate time. ACM Computing Classification System (1998): G.1.6, I.2.8.
Resumo:
Word Sense Disambiguation, the process of identifying the meaning of a word in a sentence when the word has multiple meanings, is a critical problem of machine translation. It is generally very difficult to select the correct meaning of a word in a sentence, especially when the syntactical difference between the source and target language is big, e.g., English-Korean machine translation. To achieve a high level of accuracy of noun sense selection in machine translation, we introduced a statistical method based on co-occurrence relation of words in sentences and applied it to the English-Korean machine translator RyongNamSan. ACM Computing Classification System (1998): I.2.7.
Resumo:
Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs having a distinguished or root vertex, labeled 0. The hierarchical product G2 ⊓ G1 of G2 and G1 is a graph with vertex set V2 × V1. Two vertices y2y1 and x2x1 are adjacent if and only if y1x1 ∈ E1 and y2 = x2; or y2x2 ∈ E2 and y1 = x1 = 0. In this paper, the Wiener, eccentric connectivity and Zagreb indices of this new operation of graphs are computed. As an application, these topological indices for a class of alkanes are computed. ACM Computing Classification System (1998): G.2.2, G.2.3.
Resumo:
Given an n-ary k-valued function f, gap(f) denotes the essential arity gap of f which is the minimal number of essential variables in f which become fictive when identifying any two distinct essential variables in f. In the present paper we study the properties of the symmetric function with non-trivial arity gap (2 ≤ gap(f)). We prove several results concerning decomposition of the symmetric functions with non-trivial arity gap with its minors or subfunctions. We show that all non-empty sets of essential variables in symmetric functions with non-trivial arity gap are separable. ACM Computing Classification System (1998): G.2.0.
Resumo:
We present a test for identifying clusters in high dimensional data based on the k-means algorithm when the null hypothesis is spherical normal. We show that projection techniques used for evaluating validity of clusters may be misleading for such data. In particular, we demonstrate that increasingly well-separated clusters are identified as the dimensionality increases, when no such clusters exist. Furthermore, in a case of true bimodality, increasing the dimensionality makes identifying the correct clusters more difficult. In addition to the original conservative test, we propose a practical test with the same asymptotic behavior that performs well for a moderate number of points and moderate dimensionality. ACM Computing Classification System (1998): I.5.3.
Resumo:
This paper presents the main achievements of the author’s PhD dissertation. The work is dedicated to mathematical and semi-empirical approaches applied to the case of Bulgarian wildland fires. After the introductory explanations, short information from every chapter is extracted to cover the main parts of the obtained results. The methods used are described in brief and main outcomes are listed. ACM Computing Classification System (1998): D.1.3, D.2.0, K.5.1.
Resumo:
Resolutions which are orthogonal to at least one other resolution (RORs) and sets of m mutually orthogonal resolutions (m-MORs) of 2-(v, k, λ) designs are considered. A dependence of the number of nonisomorphic RORs and m-MORs of multiple designs on the number of inequivalent sets of v/k − 1 mutually orthogonal latin squares (MOLS) of size m is obtained. ACM Computing Classification System (1998): G.2.1.
Resumo:
In this paper we compute some bounds of the Balaban index and then by means of group action we compute the Balaban index of vertex transitive graphs. ACM Computing Classification System (1998): G.2.2 , F.2.2.
Resumo:
Functional programming has a lot to offer to the developers of global Internet-centric applications, but is often applicable only to a small part of the system or requires major architectural changes. The data model used for functional computation is often simply considered a consequence of the chosen programming style, although inappropriate choice of such model can make integration with imperative parts much harder. In this paper we do the opposite: we start from a data model based on JSON and then derive the functional approach from it. We outline the identified principles and present Jsonya/fn — a low-level functional language that is defined in and operates with the selected data model. We use several Jsonya/fn implementations and the architecture of a recently developed application to show that our approach can improve interoperability and can achieve additional reuse of representations and operations at relatively low cost. ACM Computing Classification System (1998): D.3.2, D.3.4.
Resumo:
Dedicated to the memory of S.M. Dodunekov (1945–2012)Abstract. Geometric puncturing is a method to construct new codes. ACM Computing Classification System (1998): E.4.