936 resultados para glucose-6-phosphate


Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIM Depending on intensity, exercise may induce a strong hormonal and metabolic response, including acid-base imbalances and changes in microcirculation, potentially interfering with the accuracy of continuous glucose monitoring (CGM). The present study aimed at comparing the accuracy of the Dexcom G4 Platinum (DG4P) CGM during continuous moderate and intermittent high-intensity exercise (IHE) in adults with type 1 diabetes (T1DM). METHODS Ten male individuals with well-controlled T1DM (HbA1c 7.0±0.6% [54±6mmol/mol]) inserted the DG4P sensor 2 days prior to a 90min cycling session (50% VO2peak) either with (IHE) or without (CONT) a 10s all-out sprint every 10min. Venous blood samples for reference glucose measurement were drawn every 10min and euglycemia (target 7mmol/l) was maintained using an oral glucose solution. Additionally, lactate and venous blood gas variables were determined. RESULTS Mean reference blood glucose was 7.6±0.2mmol/l during IHE and 6.7±0.2mmol/l during CONT (p<0.001). IHE resulted in significantly higher levels of lactate (7.3±0.5mmol/l vs. 2.6±0.3mmol/l, p<0.001), while pH values were significantly lower in the IHE group (7.27 vs. 7.38, p=0.001). Mean absolute relative difference (MARD) was 13.3±2.2% for IHE and 13.6±2.8% for CONT suggesting comparable accuracy (p=0.90). Using Clarke Error Grid Analysis, 100% of CGM values during both IHE and CONT were in zones A and B (IHE: 77% and 23%; CONT: 78% and 22%). CONCLUSIONS The present study revealed good and comparable accuracy of the DG4P CGM system during intermittent high intensity and continuous moderate intensity exercise, despite marked differences in metabolic conditions. This corroborates the clinical robustness of CGM under differing exercise conditions. CLINICAL TRIAL REGISTRATION NUMBER ClinicalTrials.gov NCT02068638.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report is aimed at elucidating the effect of mannitol and cold treatments on P uptake and protein phosphorylation in Lemna minor plants. Duckweed p lants were incu bated in the presence of [32P]or [33P]Pi in half-strength phosphate deprived E-medium under constant light regime for 1.5 h. Total plant protein extracts (pellet and supernatant) were then prepared and subjected to IEF x SDS-PAGE. To analyse the effect of the stresses on P uptake and protein labelling, Lemna minor plants were preincubated with 0.1, 0.5 mol · L-1 mannitol and at 4°C respectively, for 4 hours, before adding labelled orthophosphate. The results show that the general protein phosphorylation (including LHCII) is related to the level of P uptake. Radioactive phosphate incorporation is stimulated by a low concentration of mannitol (0.1 mol · L-1) but reduced by 0.5 mol · L-1 mannitol and cold stress in planta. The labelling into proteins is affected neither when stresses were applied to the plants after incubation with labelled orthophosphate, nor after in vitro protein phosphorylation. This indicates that general protein kinase activities in vivo are strictly limited by P uptake. A marked accumulation of soluble hexoses (mainly sucrose, glucose, and fructose) is observed under imposed stress, suggesting that the inhibition of P uptake in response to hyperosmotic and cold stresses is mediated by sugar accumulation in situ. However, metabolisable sugars like glucose did not alter the entry of phosphate at concentrations of 0.5 mol · L-1, showing that the chemical nature of the osmoticum influences P uptake.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In both euploid Chinese hamster (Cricetulus griseus) cells and pseudodiploid Chinese hamster ovary (CHO) cells, gene assignments were accomplished by G band chromosome and isozyme analysis (32 isozymes) of interspecific somatic cell hybrids obtained after HAT selection of mouse CL 1D (TK('-)) cells which were PEG-fused with either euploid Chinese hamster cells or HPRT('-) CHO cells. Hybrids slowly segregated hamster chromosomes. Clone panels consisting of independent hybrid clones and subclones containing different combinations of Chinese hamster chromosomes and isozymes were established from each type of fusion.^ These clone panels enabled us to provisionally assign the loci for: nucleoside phosphorylase (NP), glyoxalase (GLO), glutathione reductase (GSR), adenosine kinase (ADK), esterase D (ESD), peptidases B and S (PEPB and -S) and phosphoglucomutase 2 (PGM2, human nomenclature) to chromosome 1; adenylate kinase 1 (AK1), adenosine deaminase (ADA) and inosine triosephosphatase (ITP) to chromosome 6; triosephosphate isomerase (TPI) to chromosome 8; and glucose phosphate isomerse (GPI) and peptidase D (PEPD) to chromosome 9.^ We also confirm the assignments of 6-phosphogluconate dehydrogenase (PGD), PGM1, enolase 1 (ENO1) and diptheria toxin sensitivity (DTS) to chromosome 2 as well as provisionally assign galactose-1-phosphate uridyl transferase (GALT) and AK2 to chromosome 2. Selection in either HAT or BrdU for hybrids that had retained or lost the chromosome carrying the locus for TK enabled us to assign the loci for TK, galactokinase (GALK) and acid phosphatase 1 (ACP1) to Chinese hamster chromosome 7.^ These results are discussed in relation to current theories on the basis for high frequency of drug resistant autosomal recessive mutants in CHO cells and conservation of mammalian autosomal linkage groups. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objectives of this study were to investigate the relationship between fasting serum insulin levels and Acanthosis Nigricans (AN) (a dermatological condition characterized by hyperpigmentation and thickening of the skin in specific body areas such as the neck and knuckles) and obesity among 6 to 9 year old children. Children were selected at random from a pediatric clinic located on the U.S.-Mexico border. Because none of the children participants had a weight for height at or above the 97th percentile of the CDC growth charts, obesity was defined as weight for height at or above the 95th percentile and at risk of overweight between the 85 th and 95th percentiles of the CDC growth charts. Anthropometrics, blood samples for fasting serum insulin and blood glucose, and a picture of the neck were obtained at baseline (n = 85) and 6 months later (n = 49). None of the children partipating had high fasting serum insulin levels and only 2 children had AN degree 2 (moderately severe). At baseline children with a weight for height at or above the 95th, percentile had 15 units less of insulin than children who weighed less. However, 6 months later this was not confirmed, thus the baseline result is considered to be an anomaly. Eventhough statistical significance was not reached, results showed that children without AN had 5 percentiles lower weight for height than children with AN. The most important recommendation from this study is the need to monitor longitudinal growth in children to characterize the individual child's growth pattern. AN seems to be related to longitudinal growth changes. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The association between increases in cerebral glucose metabolism and the development of acidosis is largely inferential, based on reports linking hyperglycemia with poor neurological outcome, lactate accumulation, and the severity of acidosis. We measured local cerebral metabolic rate for glucose (lCMRglc) and an index of brain pH--the acid-base index (ABI)--concurrently and characterized their interaction in a model of focal cerebral ischemia in rats in a double-label autoradiographic study, using ($\sp{14}$C) 2-deoxyglucose and ($\sp{14}$C) dimethyloxazolidinedione. Computer-assisted digitization and analysis permitted the simultaneous quantification of the two variables on a pixel-by-pixel basis in the same brain slices. Hemispheres ipsilateral to tamponade-induced middle cerebral occlusion showed areas of normal, depressed and elevated glucose metabolic rate (as defined by an interhemispheric asymmetry index) after two hours of ischemia. Regions of normal glucose metabolic rate showed normal ABI (pH $\pm$ SD = 6.97 $\pm$ 0.09), regions of depressed lCMRglc showed severe acidosis (6.69 $\pm$ 0.14), and regions of elevated lCMRglc showed moderate acidosis (6.88 $\pm$ 0.10), all significantly different at the.00125 level as shown by analysis of variance. Moderate acidosis in regions of increased lCMRglc suggests that anaerobic glycolysis causes excess protons to be generated by the uncoupling of ATP synthesis and hydrolysis. ^