938 resultados para fractal geometry
Resumo:
We report an empirical analysis of long-range dependence in the returns of eight stock market indices, using the Rescaled Range Analysis (RRA) to estimate the Hurst exponent. Monte Carlo and bootstrap simulations are used to construct critical values for the null hypothesis of no long-range dependence. The issue of disentangling short-range and long-range dependence is examined. Pre-filtering by fitting a (short-range) autoregressive model eliminates part of the long-range dependence when the latter is present, while failure to pre-filter leaves open the possibility of conflating short-range and long-range dependence. There is a strong evidence of long-range dependence for the small central European Czech stock market index PX-glob, and a weaker evidence for two smaller western European stock market indices, MSE (Spain) and SWX (Switzerland). There is little or no evidence of long-range dependence for the other five indices, including those with the largest capitalizations among those considered, DJIA (US) and FTSE350 (UK). These results are generally consistent with prior expectations concerning the relative efficiency of the stock markets examined. © 2011 Elsevier Inc.
Resumo:
A long period grating (LPG) fabricated in progressive three-layered (PTL) fibre is described. The grating with a period of 391µm, had dual attenuation bands associated with a particular cladding mode. The dual attenuation bands have been experimentally characterised for their spectral sensitivity to bending, which resulted in the highest sensitivity to bending seen for this particular fibre and temperature. The spectral characteristics of the fibre have been modelled giving good agreement to the experimental data as well as showing that the attenuation bands are both associated with the second order HE/EH2,n cladding mode.
Resumo:
This work acquaints with a program for interactive computer training to students on the subject "Mutual intersecting of pyramids in axonometry ”. Our software is a set of three modules, which we call "student", "teacher" and "autopilot". It gives the final solution of the problem, the traceability of various significant moments in its solution and 3D-image of the finished composition of the two intersecting polyhedra, stripped of the working lines and subjected to rotation and translation.
Resumo:
It is shown in the paper the discovery of two remarkable points of the triangle by means of “THE GEOMETER’S SKETCHPAD” software. Some properties of the points are considered too.
Resumo:
We consider quadrate matrices with elements of the first row members of an arithmetic progression and of the second row members of other arithmetic progression. We prove the set of these matrices is a group. Then we give a parameterization of this group and investigate about some invariants of the corresponding geometry. We find an invariant of any two points and an invariant of any sixth points. All calculations are made by Maple.
Resumo:
Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2014
Resumo:
2000 Mathematics Subject Classification: 53C42, 53C15.
Resumo:
Purpose: The human retinal vasculature has been demonstrated to exhibit fractal, or statistically self similar properties. Fractal analysis offers a simple quantitative method to characterise the complexity of the branching vessel network in the retina. Several methods have been proposed to quantify the fractal properties of the retina. Methods: Twenty five healthy volunteers underwent retinal photography, retinal oximetry and ocular biometry. A robust method to evaluate the fractal properties of the retinal vessels is proposed; it consists of manual vessel segmentation and box counting of 50 degree retinal photographs centred on the fovea. Results: Data is presented on the associations between the fractal properties of the retinal vessels and various functional properties of the retina. Conclusion Fractal properties of the retina could offer a promising tool to assess the risk and prognostic factors that define retinal disease. Outstanding efforts surround the need to adopt a standardised protocol for assessing the fractal properties of the retina, and further demonstrate its association with disease processes.
Resumo:
In SNAP (Surface nanoscale axial photonics) resonators propagation of a slow whispering gallery mode along an optical fiber is controlled by nanoscale variation of the effective radius of the fiber [1]. Similar behavior can be realized in so - called nanobump microresonators in which the introduced variation of the effective radius is asymmetric, i.e. depends on the axial coordinate [2]. The possibilities of realization of such structures “on the fly” in an optical fiber by applying external electrostatic fields to it is discussed in this work. It is shown that local variations in effective radius of the fiber and in its refractive index caused by external electric fields can be large enough to observe SNAP structure - like behavior in an originally flat optical fiber. Theoretical estimations of the introduced refractive index and effective radius changes and results of finite element calculations are presented. Various effects are taken into account: electromechanical (piezoelectricity and electrostriction), electro-optical (Pockels and Kerr effects) and elasto-optical effect. Different initial fibre cross-sections are studied. The aspects of use of linear isotropic (such as silica) and non-linear anisotropic (such as lithium niobate) materials of the fiber are discussed. REFERENCES [1] M. Sumetsky, J. M. Fini, Opt. Exp. 19, 26470 (2011). [2] L. A. Kochkurov, M. Sumetsky, Opt. Lett. 40, 1430 (2015).
Resumo:
The 9/11 Act mandates the inspection of 100% of cargo shipments entering the U.S. by 2012 and 100% inspection of air cargo by March 2010. So far, only 5% of inbound shipping containers are inspected thoroughly while air cargo inspections have fared better at 50%. Government officials have admitted that these milestones cannot be met since the appropriate technology does not exist. This research presents a novel planar solid phase microextraction (PSPME) device with enhanced surface area and capacity for collection of the volatile chemical signatures in air that are emitted from illicit compounds for direct introduction into ion mobility spectrometers (IMS) for detection. These IMS detectors are widely used to detect particles of illicit substances and do not have to be adapted specifically to this technology. For static extractions, PDMS and sol-gel PDMS PSPME devices provide significant increases in sensitivity over conventional fiber SPME. Results show a 50–400 times increase in mass detected of piperonal and a 2–4 times increase for TNT. In a blind study of 6 cases suspected to contain varying amounts of MDMA, PSPME-IMS correctly detected 5 positive cases with no false positives or negatives. One of these cases had minimal amounts of MDMA resulting in a false negative response for fiber SPME-IMS. A La (dihed) phase chemistry has shown an increase in the extraction efficiency of TNT and 2,4-DNT and enhanced retention over time. An alternative PSPME device was also developed for the rapid (seconds) dynamic sampling and preconcentration of large volumes of air for direct thermal desorption into an IMS. This device affords high extraction efficiencies due to strong retention properties under ambient conditions resulting in ppt detection limits when 3.5 L of air are sampled over the course of 10 seconds. Dynamic PSPME was used to sample the headspace over the following: MDMA tablets (12–40 ng detected of piperonal), high explosives (Pentolite) (0.6 ng detected of TNT), and several smokeless powders (26–35 ng of 2,4-DNT and 11–74 ng DPA detected). PSPME-IMS technology is flexible to end-user needs, is low-cost, rapid, sensitive, easy to use, easy to implement, and effective. ^
Resumo:
Structural Health Monitoring (SHM) systems were developed to evaluate the integrity of a system during operation, and to quickly identify the maintenance problems. They will be used in future aerospace vehicles to improve safety, reduce cost and minimize the maintenance time of a system. Many SHM systems were already developed to evaluate the integrity of plates and used in marine structures. Their implementation in manufacturing processes is still expected. The application of SHM methods for complex geometries and welds are two important challenges in this area of research. This research work started by studying the characteristics of piezoelectric actuators, and a small energy harvester was designed. The output voltages at different frequencies of vibration were acquired to determine the nonlinear characteristics of the piezoelectric stripe actuators. The frequency response was evaluated experimentally. AA battery size energy harvesting devices were developed by using these actuators. When the round and square cross section devices were excited at 50 Hz frequency, they generated 16 V and 25 V respectively. The Surface Response to Excitation (SuRE) and Lamb wave methods were used to estimate the condition of parts with complex geometries. Cutting tools and welded plates were considered. Both approaches used piezoelectric elements that were attached to the surfaces of considered parts. The variation of the magnitude of the frequency response was evaluated when the SuRE method was used. The sum of the square of the differences was calculated. The envelope of the received signal was used for the analysis of wave propagation. Bi-orthogonal wavelet (Binlet) analysis was also used for the evaluation of the data obtained during Lamb wave technique. Both the Lamb wave and SuRE approaches along with the three methods for data analysis worked effectively to detect increasing tool wear. Similarly, they detected defects on the plate, on the weld, and on a separate plate without any sensor as long as it was welded to the test plate.
Resumo:
Edible oil is an important contaminant in water and wastewater. Oil droplets smaller than 40 μm may remain in effluent as an emulsion and combine with other contaminants in water. Coagulation/flocculation processes are used to remove oil droplets from water and wastewater. By adding a polymer at proper dose, small oil droplets can be flocculated and separated from water. The purpose of this study was to characterize and analyze the morphology of flocs and floc formation in edible oil-water emulsions by using microscopic image analysis techniques. The fractal dimension, concentration of polymer, effect of pH and temperature are investigated and analyzed to develop a fractal model of the flocs. Three types of edible oil (corn, olive, and sunflower oil) at concentrations of 600 ppm (by volume) were used to determine the optimum polymer dosage and effect of pH and temperature. To find the optimum polymer dose, polymer was added to the oil-water emulsions at concentration of 0.5, 1.0, 1.5, 2.0, 3.0 and 3.5 ppm (by volume). The clearest supernatants obtained from flocculation of corn, olive, and sunflower oil were achieved at polymer dosage of 3.0 ppm producing turbidities of 4.52, 12.90, and 13.10 NTU, respectively. This concentration of polymer was subsequently used to study the effect of pH and temperature on flocculation. The effect of pH was studied at pH 5, 7, 9, and 11 at 30°C. Microscopic image analysis was used to investigate the morphology of flocs in terms of fractal dimension, radius of oil droplets trapped in floc, floc size, and histograms of oil droplet distribution. Fractal dimension indicates the density of oil droplets captured in flocs. By comparison of fractal dimensions, pH was found to be one of the most important factors controlling droplet flocculation. Neutral pH or pH 7 showed the highest degree of flocculation, while acidic (pH 5) and basic pH (pH 9 and pH 11) showed low efficiency of flocculation. The fractal dimensions achieved from flocculation of corn, olive, and sunflower oil at pH 7 and temperature 30°C were 1.2763, 1.3592, and 1.4413, respectively. The effect of temperature was explored at temperatures 20°, 30°, and 40°C and pH 7. The results of flocculation of oil at pH 7 and different temperatures revealed that temperature significantly affected flocculation. The fractal dimension of flocs formed in corn, olive and sunflower oil emulsion at pH 7 and temperature 20°, 30°, and 40°C were 1.82, 1.28, 1.29, 1.62, 1.36, 1.42, 1.36, 1.44, and 1.28, respectively. After comparison of fractal dimension, radius of oil droplets captured, and floc length in each oil type, the optimal flocculation temperature was determined to be 30°C. ^
Resumo:
The fractal self-similarity property is studied to develop frequency selective surfaces (FSS) with several rejection bands. Particularly, Gosper fractal curves are used to define the shapes of the FSS elements. Due to the difficulty of making the FSS element details, the analysis is developed for elements with up to three fractal levels. The simulation was carried out using Ansoft Designer software. For results validation, several FSS prototypes with fractal elements were fabricated. In the fabrication process, fractals elements were designed using computer aided design (CAD) tools. The prototypes were measured using a network analyzer (N3250A model, Agilent Technologies). Matlab software was used to generate compare measured and simulated results. The use of fractal elements in the FSS structures showed that the use of high fractal levels can reduce the size of the elements, at the same time as decreases the bandwidth. We also investigated the effect produced by cascading FSS structures. The considered cascaded structures are composed of two FSSs separated by a dielectric layer, which distance is varied to determine the effect produced on the bandwidth of the coupled geometry. Particularly, two FSS structures were coupled through dielectric layers of air and fiberglass. For comparison of results, we designed, fabricated and measured several prototypes of FSS on isolated and coupled structures. Agreement was observed between simulated and measured results. It was also observed that the use of cascaded FSS structures increases the FSSs bandwidths and, in particular cases, the number of resonant frequencies, in the considered frequency range. In future works, we will investigate the effects of using different types of fractal elements, in isolated, multilayer and coupled FSS structures for applications on planar filters, high-gain microstrip antennas and microwave absorbers
Resumo:
In this work we have investigated some aspects of the two-dimensional flow of a viscous Newtonian fluid through a disordered porous medium modeled by a random fractal system similar to the Sierpinski carpet. This fractal is formed by obstacles of various sizes, whose distribution function follows a power law. They are randomly disposed in a rectangular channel. The velocity field and other details of fluid dynamics are obtained by solving numerically of the Navier-Stokes and continuity equations at the pore level, where occurs actually the flow of fluids in porous media. The results of numerical simulations allowed us to analyze the distribution of shear stresses developed in the solid-fluid interfaces, and find algebraic relations between the viscous forces or of friction with the geometric parameters of the model, including its fractal dimension. Based on the numerical results, we proposed scaling relations involving the relevant parameters of the phenomenon, allowing quantifying the fractions of these forces with respect to size classes of obstacles. Finally, it was also possible to make inferences about the fluctuations in the form of the distribution of viscous stresses developed on the surface of obstacles.
Resumo:
This project was supported by the National Natural Science Foundation of China (No. 41572116), the Fundamental Research Funds for the Central Universities, China University of Geosciences, Wuhan) (No. CUG160602).