923 resultados para formation of networks
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We employ a time- dependent mean- field- hydrodynamic model to study the generation of bright solitons in a degenerate fermion - fermion mixture in a cigar- shaped geometry using variational and numerical methods. Due to a strong Pauli- blocking repulsion among identical spin- polarized fermions at short distances there cannot be bright solitons for repulsive interspecies interactions. Employing a linear stability analysis we demonstrate the formation of stable solitons due to modulational instability of a constant-amplitude solution of the model equations for a sufficiently attractive interspecies interaction. We perform a numerical stability analysis of these solitons and also demonstrate the formation of soliton trains by jumping the effective interspecies interaction from repulsive to attractive. These fermionic solitons can be formed and studied in laboratory with present technology.
Resumo:
Chiral cosmic strings are naturally produced at the end of D-term inflation and they present very interesting cosmological consequences. In this work, we investigate the formation and evolution of wakes by a chiral string. We show that, for cold dark matter, the mechanism of forming wakes by a chiral string is similar to the mechanism by an ordinary string.
Resumo:
The problem of generation of atomic soliton trains in elongated Bose-Einstein condensates is considered in framework of Whitham theory of modulations of nonlinear waves. Complete analytical solution is presented for the case when the initial density distribution has sharp enough boundaries. In this case the process of soliton train formation can be viewed as a nonlinear Fresnel diffraction of matter waves. Theoretical predictions are compared with results of numerical simulations of one- and three-dimensional Gross-Pitaevskii equation and with experimental data on formation of Bose-Einstein bright solitons in cigar-shaped traps. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Rate coefficients for direct radiative association of carbon and nitrogen atoms to form CN, and of carbon ions and nitrogen atoms to form CN+ ions, are calculated for temperatures in the range of 300 to 14,700 K. For the CN molecule, the rate coefficients can be represented by the standard expression, k(CN)(T) = 7.87 x 10(-19)(T/300)(0.056) exp (-96.0/T) cm(3) s(-1) for temperatures between 300 and 2700 K and k(CN)(T) = 1.37 x 10(-18)(T/300)-0.128 exp (-520.1/T) cm(-3) s(-1) at T > 2700 K. For the CN+ ion, the corresponding expression is k(CN+)(T) = 1.08 x 10(-18)(T/300)(0.071) exp (-57.5/T) cm(-3) s(-1) for the temperature range studied. Calculated rate coefficients k(CN) are about 2 orders of magnitude lower than the canonical value used in the modeling of the chemistry of various astrophysical environments.
Resumo:
Rate coefficients for radiative association of SO, SO+, and S-2 are estimated. For temperatures ranging from 300 to 14,000 K, the direct radiative association rate coefficients are found to vary with temperature from 1.73 x 10(-19) to 7.29 x 10(-19) cm(3) s(-1) and from 1.49 x 10(-21) to 3.70 x 10(-19) cm(3) s(-1) for S-2 and SO, respectively. The rate coefficients for formation through the inverse predissociation for S-2 are found to vary from 3.59 x 10(-18) to 1.44 x 10(-20) cm(3) s(-1). For SO+, the direct rate coefficient varies rapidly with temperature from 3.62 x 10(-27) cm(3) s(-1) at 2000 K to 2.34 x 10(-20) cm(3) s(-1) at 14,000 K. The direct radiative association rate coefficients increase with the increase in temperature, but the inverse predissociation rate coefficients decrease with the increase in temperature.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Precursor solutions for Pb(Mg1/3Nb2/3)O-3 (PMN) synthesis were obtained by Pechini's method. The influence of the concentration of organic materials on the phase formation has been studied. For this purpose, PMN solutions were prepared with different precursors and were characterized by thermogravimetric and differential thermal analysis. The obtained solutions were deposited onto a Si (100) substrate by dip coating and pre-treated in a hot plate at 300 degreesC for 1 h. The films were annealed at 600, 700, 800 and 900 degreesC for 1 h and characterized by X-ray diffraction. The perovskite phase was formed after annealing at 600 and 700 degreesC when the solution of PMN was prepared with a lower amount of organic material and starting with mobium oxide. By increasing the temperature to 800 or 900 degreesC, only the formation of pyrochlore phase was observed. With the solution prepared from mobium ethoxide, only the presence of pyrochlore phase was observed independently of the annealing temperature. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Com o objetivo de estudar a relação entre cristais de oxalato de cálcio e floema, fragmentos de folhas de Peltodon radicans foram fixados e processados, segundo métodos usuais, para estudos ao microscópio de luz e eletrônico de transmissão. Observou-se que os cristais ocorrem nas células da bainha do feixe, lateralmente em relação ao floema. Células intermediárias estabelecem conexão entre elemento crivado e células da bainha, portadoras de cristais, com crescimento intrusivo entre estas. Íons cálcio são abundantes no citoplasma das células da bainha que contém cristais de oxalato de cálcio. Nas células intermediárias a detecção ultra-citoquímica de cálcio também apresentou resultados positivos, enquanto nos elementos crivados a presença deste íon não foi constatada. Há, portanto, um gradiente crescente de concentração de cálcio dos elementos crivados para as células da bainha. Assim, formulamos a hipótese de que a formação de cristais de oxalato de cálcio tem, em P. radicans, o objetivo de controlar os níveis de cálcio citossólico nos elementos crivados.
Resumo:
Bismuth titanatc-Bi(4)Ti(3)O(12) (BIT) with wide application in the electronic industry as capacitors, memory devices and sensors is the simplest compound in the Aurivillius family, which consists of (Bi(2)O(2))(2+) sheets alternating with (Bi(2)T(i)3O(10))(2-) perovskite-like layers. The synthesis of more resistive BIT ceramics would be preferable advance in obtaining of well-densified ceramic with small grains randomly oriented to limit the conductivity along the (Bi(2)O(2))(2+) layers. Having in mind that the conventional ceramic route for the synthesis can lead to non-stoichiometry in composition, in consequence of the undesirable loss in bismuth content through volatilization of Bi(2)O(3) at elevated temperature, our efforts were addressed to preparation of BIT by mechanical activation the constituent oxides. The nucleation and phase formation of BIT, crystal structure, microstructure, powder particle size and specific surface area were followed by XRD, Rietveld refinement analysis, thermal analysis, scanning electron microscopy (SEM) and the BET specific surface area measurements. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The objective of present research was to verify the IBA and/or NAA effects with boron, on rooting of coffee (Coffea arabica L. cv 'Mundo Novo') stem cuttings. Therefore it were used stem cuttings from semi-hardwood orthotropous branches, having two nodes, with aproximately 10 cm of lenght. The cuttings were treateds during 24 hours with IBA and/or NAA plus boron solutions. The treatments' effect was observed trough the following observation, 90 days after planting: rooting percentage and number of cuttings with ''callus''. Trough the resultS obtained, it was concluded that, for obtaining more rooting of cuttings, the best treatment was NAA at 200 ppm plus boron or, the combination of IBA and NAA at 200 ppm plus boron.
Resumo:
In this paper we describe the production of zirconia-based foams by a novel thermostimulated sol-gel route, that employs the foaming of colloidal suspensions prior to the sol-gel transition promoted by small increase of temperature (congruent to3 degreesC). This method produces gelled bodies having porosity >70% in the wet stage, and can be used to produce complex-shaped components. The effect of a foaming agent (Freon11 or CCl3F) and surfactant content on the formation and stability of the foams was analyzed. The rheologic measurements demonstrate that by increasing the surfactant concentration, the gelation time decreases increasing foam stability. As the surfactant concentration and quantity of foaming agent increase, the density decreases and the porosity increases. Hg porosimetry results show that the dry foam presents a bimodal pore size distribution. The family of sub-micrometer pores was attributed to the formation of a microemulsion between Freon11 and water. Scanning electron microscopy analysis shows that the foam structure consists of a three-dimensional network of spherical pores, which may be open and interconnected or closed, at larger or smaller porosities, respectively. Finally these results show that the thermostimulated sol-gel transition provides a potential route for ceramic foam manufacture. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The chemical and structural nature of powders prepared from the zinc acetate-derived precursor using the sol-gel route is discussed. The influence of the synthesis temperature and of the hydrolytic catalyst on the structural features of the powder is focused on the basis of X-ray powder diffraction (XRPD) and extended X-ray absorption fine structure (EXAFS) measurements and complemented with density and thermoanalysis (TG-DTA) results. EXAFS and XRPD results show that no-washed nanoparticulate powders are composed of a mixture of ZnO (wurtzite), zinc acetate, and zinc hydroxyacetate. The latter has a layered structure typical of hydroxy double salts (HDS). The main component of no-washed powders is always unreacted zinc acetate solid but the relative amount of the zinc-based compounds depends on the nature of the hydrolytic catalyst, hydrolysis ratio, and of synthesis temperature. According to the proportion of the three zinc-based compounds, three families of powders could be distinguished. The amount of ZnO nanoparticles (1.6 +/- 0.6 nm) decreases as the synthesis temperature increases, as the hydrolysis ratio decreases, or by changing from basic to acid catalysis. This finding suggests that the formation of zinc compounds is controlled by the equilibrium between hydrolysis-condensation and complexation-reprecipitation reactions.