989 resultados para field theory at finite temperature
Resumo:
Surfaces coated with polymer brushes in a good solvent are known to exhibit excellent tribological properties. We have performed coarse-grained equilibrium and nonequilibrium molecular dynamics (MD) simulations to investigate dextran polymer brushes in an aqueous environment in molecular detail. In a first step, we determined simulation parameters and units by matching experimental results for a single dextran chain. Analyzing this model when applied to a multichain system, density profiles of end-tethered polymer brushes obtained from equilibrium MD simulations compare very well with expectations based on self-consistent field theory. Simulation results were further validated against and correlated with available experimental results. The simulated compression curves (normal force as a function of surface separation) compare successfully with results obtained with a surface forces apparatus. Shear stress (friction) obtained via nonequilibrium MD is contrasted with nanoscale friction studies employing colloidal-probe lateral force microscopy. We find good agreement in the hydrodynamic regime and explain the observed leveling-off of the friction forces in the boundary regime by means of an effective polymer–wall attraction.
Resumo:
Let L be a number field and let E/L be an elliptic curve with complex multiplication by the ring of integers O_K of an imaginary quadratic field K. We use class field theory and results of Skorobogatov and Zarhin to compute the transcendental part of the Brauer group of the abelian surface ExE. The results for the odd order torsion also apply to the Brauer group of the K3 surface Kum(ExE). We describe explicitly the elliptic curves E/Q with complex multiplication by O_K such that the Brauer group of ExE contains a transcendental element of odd order. We show that such an element gives rise to a Brauer-Manin obstruction to weak approximation on Kum(ExE), while there is no obstruction coming from the algebraic part of the Brauer group.
Resumo:
Melts of ABA triblock copolymer molecules with identical end blocks are examined using self-consistent field theory (SCFT). Phase diagrams are calculated and compared with those of homologous AB diblock copolymers formed by snipping the triblocks in half. This creates additional end segments which decreases the degree of segregation. Consequently, triblock melts remain ordered to higher temperatures than their diblock counterparts. We also find that middle-block domains are easier to stretch than end-block domains. As a result, domain spacings are slightly larger, the complex phase regions are shifted towards smaller A-segment compositions, and the perforated-lamellar phase becomes more metastable in triblock melts as compared to diblock melts. Although triblock and diblock melts exhibit very similar phase behavior, their mechanical properties can differ substantially due to triblock copolymers that bridge between otherwise disconnected A domains. We evaluate the bridging fraction for lamellar, cylindrical, and spherical morphologies to be about 40%–45%, 60%–65%, and 75%–80%, respectively. These fractions only depend weakly on the degree of segregation and the copolymer composition.
Resumo:
The stability of ternary blends of two immiscible homopolymers and a block copolymer compatiblizer depends crucially on the effective interaction between the copolymermonolayers that form between the unlike homopolymer domains. Here, the interaction is calculated for blends involving A and B homopolymers of equal size with ABABdiblock copolymers of symmetric composition using both self-consistent field theory (SCFT) and strong-segregation theory (SST). If the homopolymers are larger than the copolymer molecules, an attractive interaction is predicted which would destroy the blend. This conclusion coupled with considerations regarding the elastic properties of the monolayer suggests that the optimum size of the homopolymer molecules is about 80% that of the copolymer molecule. A detailed examination of the theory demonstrates that the attraction results from the configurational entropy loss of the homopolymer molecules trapped between the copolymermonolayers. We conclude by suggesting how the monolayers can be altered in order to suppress this attraction and thus improve compatiblization.
Resumo:
We performed Monte Carlo simulations to investigate the steady-state critical behavior of a one-dimensional contact process with an aperiodic distribution of rates of transition. As in the presence of randomness, spatial fluctuations can lead to changes of critical behavior. For sufficiently weak fluctuations, we give numerical evidence to show that there is no departure from the universal critical behavior of the underlying uniform model. For strong spatial fluctuations, the analysis of the data indicates a change of critical universality class.
Resumo:
We consider the three-particle scattering S-matrix for the Landau-Lifshitz model by directly computing the set of the Feynman diagrams up to the second order. We show, following the analogous computations for the non-linear Schrdinger model [1, 2], that the three-particle S-matrix is factorizable in the first non-trivial order.
Resumo:
We investigate the perturbation series for the spectrum of a class of Schrodinger operators with potential V = 1/2 x(2) + g(m-1)x(2m)/(1 + alpha gx(2)) which generalize particular cases investigated in the literature in connection with models in laser theory and quantum field theory of particles and fields. It is proved that the series obey a modified strong asymptotic condition of order (m - 1) and have an order (m - 1) strong asymptotic series in g which are shown to be summable in the sense of Borel-Leroy method.
Resumo:
We consider the formal non-relativistic limit (nrl) of the : phi(4):(s+1) relativistic quantum field theory (rqft), where s is the space dimension. Following the work of R. Jackiw [R. Jackiw, in: A. Ali, P. Hood-bhoy (Eds.), Beg Memorial Volume, World Scientific, Singapore, 1991], we show that, for s = 2 and a given value of the ultraviolet cutoff K, there are two ways to perform the nrl: (i) fixing the renormalized mass m(2) equal to the bare mass m(0)(2); (ii) keeping the renormalized mass fixed and different from the bare mass mo. In the (infinite-volume) two-particle sector the scattering amplitude tends to zero as K -> infinity in case (i) and, in case (ii), there is a bound state, indicating that the interaction potential is attractive. As a consequence, stability of matter fails for our boson system. We discuss why both alternatives do not reproduce the low-energy behaviour of the full rqft. The singular nature of the nrl is also nicely illustrated for s = 1 by a rigorous stability/instability result of a different nature. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
The model of dynamical noncommutativity is proposed. The system consists of two interrelated parts. The first of them describes the physical degrees of freedom with the coordinates q(1) and q(2), and the second corresponds to the noncommutativity eta which has a proper dynamics. After quantization, the commutator of two physical coordinates is proportional to the function of eta. The interesting feature of our model is the dependence of nonlocality on the energy of the system. The more the energy, the more the nonlocality. The leading contribution is due to the mode of noncommutativity; however, the physical degrees of freedom also contribute in nonlocality in higher orders in theta .
Resumo:
We study the duality of the supersymmetric self-dual and Maxwell-Chern-Simons theories coupled to a fermionic matter superfield, using a master action. This approach evades the difficulties inherent to the quartic couplings that appear when matter is represented by a scalar superfield. The price is that the spinorial matter superfield represents a unusual supersymmetric multiplet, whose main physical properties we also discuss. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
It is known that the actions of field theories on a noncommutative space-time can be written as some modified (we call them theta-modified) classical actions already on the commutative space-time (introducing a star product). Then the quantization of such modified actions reproduces both space-time noncommutativity and the usual quantum mechanical features of the corresponding field theory. In the present article, we discuss the problem of constructing theta-modified actions for relativistic QM. We construct such actions for relativistic spinless and spinning particles. The key idea is to extract theta-modified actions of the relativistic particles from path-integral representations of the corresponding noncommutative field theory propagators. We consider the Klein-Gordon and Dirac equations for the causal propagators in such theories. Then we construct for the propagators path-integral representations. Effective actions in such representations we treat as theta-modified actions of the relativistic particles. To confirm the interpretation, we canonically quantize these actions. Thus, we obtain the Klein-Gordon and Dirac equations in the noncommutative field theories. The theta-modified action of the relativistic spinning particle is just a generalization of the Berezin-Marinov pseudoclassical action for the noncommutative case.
Resumo:
The scalar form factor describes modifications induced by the pion over the quark condensate. Assuming that representations produced by chiral perturbation theory can be pushed to high values of negative-t, a region in configuration space is reached (r < R similar to 0.5 fm) where the form factor changes sign, indicating that the condensate has turned into empty space. A simple model for the pion incorporates this feature into density functions. When supplemented by scalar-meson excitations, it yields predictions close to empirical values for the mean square radius (< r(2)>(pi)(S) = 0.59 fm(2)) and for one of the low energy constants ((l) over bar (4) = 4.3), with no adjusted parameters.
Resumo:
The sigma model describing the dynamics of the superstring in the AdS(5) x S(5) background can be constructed using the coset PSU(2, 2 vertical bar 4)/SO(4, 1) x SO(5). A basic set of operators in this two dimensional conformal field theory is composed by the left invariant currents. Since these currents are not (anti) holomorphic, their OPE`s is not determined by symmetry principles and its computation should be performed perturbatively. Using the pure spinor sigma model for this background, we compute the one-loop correction to these OPE`s. We also compute the OPE`s of the left invariant currents with the energy momentum tensor at tree level and one loop.
Resumo:
We discuss an interacting tachyonic dark energy model in the context of the holographic principle. The potential of the holographic tachyon field in interaction with dark matter is constructed. The model results are compared with CMB shift parameter, baryonic acoustic oscilations, lookback time and the Constitution supernovae sample. The coupling constant of the model is compatible with zero, but dark energy is not given by a cosmological constant.
Resumo:
We develop an approach to the deformation quantization on the real plane with an arbitrary Poisson structure which is based on Weyl symmetrically ordered operator products. By using a polydifferential representation for the deformed coordinates, xj we are able to formulate a simple and effective iterative procedure which allowed us to calculate the fourth-order star product (and may be extended to the fifth order at the expense of tedious but otherwise straightforward calculations). Modulo some cohomology issues which we do not consider here, the method gives an explicit and physics-friendly description of the star products.