739 resultados para drag
Resumo:
My dissertation presents a study of satire in contemporary German Fiction of Turkish migration. Engaging with a body of works hitherto neglected in scholarship, I examine how satirical texts, films, and plays intervene critically in discourses on post-unification German national identity. Drawing on the seminal work of scholars such as Leslie Adelson, Tom Cheesman, B. Venkat Mani, Petra Fachinger, and Deniz Göktürk, my dissertation expands the scholarship of Turkish German Studies by linking a discussion of satire as a critical rhetoric to the question of how we talk about what it means to be German.
Chapter one offers a novel framework of the satirical vis-à-vis standard conceptions of satire and deconstructionist theories of reading. I understand satire as a form of rhetoric that creates moments of ambiguity by bringing together intersectional categories like gender, ethnicity, race, religion, in order to challenge the audience’s practices of interpreting cultural otherness. Chapter two examines the use of ethnic self-deprecation as one such strategy in Osman Engin’s short stories and his first novel, Kanaken-Ghandi through the lens of Bakhtinian polyphony and Judith Butler’s work on hate speech. Engin, I argue, employs ethnic selfdeprecation as a narrative strategy to straddle the line between deconstructing and re-affirming cultural stereotypes. Investigating the role of ethnic impersonation in Hussi Kutlucan’s film Ich Chef, Du Turnshuh, the third chapter turns to the question of ethnicity as a visual signifier for the negotiation of cultural inclusion and exclusion in post-1990 film. In dialogue with Katrin Sieg’s work on ethnic drag and Amy Robinson’s theory of passing, I show how the film challenges ethnically-coded narratives of Germanness. In the final chapter on Nurkan Erpulat and Jens Hillje’s play Verrücktes Blut, I discuss how intertextuality and adaptation (Hutcheon, Genette) of different story and character worlds are used to create moments of ambiguity and overdeterminacy in the play, in order to challenge the audience’s perception of what an inclusive German society might look like.
Resumo:
The increasing nationwide interest in intelligent transportation systems (ITS) and the need for more efficient transportation have led to the expanding use of variable message sign (VMS) technology. VMS panels are substantially heavier than flat panel aluminum signs and have a larger depth (dimension parallel to the direction of traffic). The additional weight and depth can have a significant effect on the aerodynamic forces and inertial loads transmitted to the support structure. The wind induced drag forces and the response of VMS structures is not well understood. Minimum design requirements for VMS structures are contained in the American Association of State Highway Transportation Officials Standard Specification for Structural Support for Highway Signs, Luminaires, and Traffic Signals (AASHTO Specification). However the Specification does not take into account the prismatic geometry of VMS and the complex interaction of the applied aerodynamic forces to the support structure. In view of the lack of code guidance and the limited number research performed so far, targeted experimentation and large scale testing was conducted at the Florida International University (FIU) Wall of Wind (WOW) to provide reliable drag coefficients and investigate the aerodynamic instability of VMS. A comprehensive range of VMS geometries was tested in turbulence representative of the high frequency end of the spectrum in a simulated suburban atmospheric boundary layer. The mean normal, lateral and vertical lift force coefficients, in addition to the twisting moment coefficient and eccentricity ratio, were determined using the measured data for each model. Wind tunnel testing confirmed that drag on a prismatic VMS is smaller than the 1.7 suggested value in the current AASHTO Specification (2013). An alternative to the AASHTO Specification code value is presented in the form of a design matrix. Testing and analysis also indicated that vortex shedding oscillations and galloping instability could be significant for VMS signs with a large depth ratio attached to a structure with a low natural frequency. The effect of corner modification was investigated by testing models with chamfered and rounded corners. Results demonstrated an additional decrease in the drag coefficient but a possible Reynolds number dependency for the rounded corner configuration.
Resumo:
From humble beginnings less than twenty years ago, the economic relationship between Canada and the Chinese has flourished so that China is now Canada’s second most important trading partner after the United States. The Chinese demand for Canada’s exports, in particular in the natural resource sectors, has been a clear win for Canada, especially during the recent Great Recession where demand from other countries dropped sharply. But other aspects of the relationship have led to suggestions of costs. Canada’s large trade deficit with China at least looks superficially as a drag on the Canadian economy. It has been suggested the greater exposure to a low cost producer has displaced Canadian production and jobs and lowered wages. We find that each argument for costs to the relationship ignores important factors. On balance we conclude the relationship has been good for Canada, and it could be even better in the future.
Resumo:
En este artículo se recoge la historia de la enseñanza oficial de cine en España: los dos centros en los que se llevó a cabo, sus sedes, sus directores y las prácticas de fin de carrera. Todo ello visto desde la división en tres etapas del tiempo de existencia de la enseñanza anterior a su incorporación a la universidad: la etapa fundacional, la edad de oro y la crisis que lleva al cierre. A lo largo de estas tres etapas hubo un cambio de actitud en el alumnado, desde el entusiasmo y la ilusión inicial al desencanto y rechazo absoluto hacia la Escuela en los últimos años.
Resumo:
The popularity of Computing degrees in the UK has been increasing significantly over the past number of years. In Northern Ireland, from 2007 to 2015, there has been a 40% increase in acceptances to Computer Science degrees with England seeing a 60% increase over the same period (UCAS, 2016). However, this is tainted as Computer Science degrees also continue to maintain the highest dropout rates.
In Queen’s University Belfast we currently have a Level 1 intake of over 400 students across a number of computing pathways. Our drive as staff is to empower and motivate the students to fully engage with the course content. All students take a Java programming module the aim of which is to provide an understanding of the basic principles of object-oriented design. In order to assess these skills, we have developed Jigsaw Java as an innovative assessment tool offering intelligent, semi-supervised automated marking of code.
Jigsaw Java allows students to answer programming questions using a drag-and-drop interface to place code fragments into position. Their answer is compared to the sample solution and if it matches, marks are allocated accordingly. However, if a match is not found then the corresponding code is executed using sample data to determine if its logic is acceptable. If it is, the solution is flagged to be checked by staff and if satisfactory is saved as an alternative solution. This means that appropriate marks can be allocated and should another student have submitted the same placement of code fragments this does not need to be executed or checked again. Rather the system now knows how to assess it.
Jigsaw Java is also able to consider partial marks dependent on code placement and will “learn” over time. Given the number of students, Jigsaw Java will improve the consistency and timeliness of marking.
Resumo:
En genusteoretisk stickprovskontroll. Uppsatsen genomlyser Camilla Grebes Älskaren från huvudkontoret ur ett genusteoretiskt perspektiv med focus på Luce Irigaray teorier. Inledningsvis presenteras Luce Irigaray övergripande och hennes arbete ställs i relation till Simone de Beauvoirs. Irigarays teorier om maskulint och feminint subjekt gås igenom och teoridelen avslutas med ett destillat av teorierna här kallat; typiska drag. Utifrån dessa typiska drag analyseras delar, utvalda med heuristisk metod, av Camilla Grebes roman Älskaren från huvudkontoret från 2015. I analysen diskuteras utöver undersökningen och de presenterade teorierna även paralleller till Janice Radways Kvinnor läser romantik: om samspelet mellan text och kontext. Resultaten av undersökningen och slutsatsen diskuteras och ifrågasätts.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-07
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Syftet med denna studie var att undersöka hur medarbetarna på BA (fiktivt namn) upplever organisationens interna Employer Branding-arbete samt att belysa de aspekter som eventuellt skiljer strategi mot upplevelse. Det gjordes ett målinriktat urval av organisation medan valet av deltagare var ett slumpmässigt urval vilket resulterade i åtta respondenter (n= 8). Studien var en kvalitativ fallstudie med ett psykologiskt angreppssätt och innehöll en ostrukturerad intervju som tillsammans med dokumentation utgjorde intervjuguiden för den primära datainsamlingen genom åtta semistrukturerade intervjuer med medarbetarna. Fördelningen av urvalet var fyra kvinnor och fyra män med varierade yrkesroller inom en bemanningsdivision. Både den ostrukturerade intervjun och de semistrukturerade intervjuerna analyserades med hjälp av analysmetoden tematisk analys. Studiens resultat visade att BA:s interna Employer Branding och medarbetarnas upplevelser i stora drag överensstämde. Värderingar och interna karriärmöjligheter var centrala aspekter som både organisationen och respondenterna belyste.
Resumo:
In this study, the dynamic response of a vertical flexible cylinder vibrating at low mode numbers with combined x-y motion was investigated in a towing tank. The uniform flow was simulated by towing the flexible cylinder along the tank in still water; therefore, the turbulence intensity of the free flow was negligible in obtaining more reliable results. A lower branch of dominant frequencies with micro vibration amplitude was found in both cross-flow and in-line directions. This justifiable discrepancy was likely caused by an initial lock-in. The maximum attainable amplitude, modal analysis and x-y trajectory in cross-flow and in-line directions are reported here and compared with previous literature, along with some good agreements and different observations that were obtained from the study. Drag and lift coefficients are also evaluated by making use of a generalized integral transform technique approach, yielding an alternative method to study fluid force acting upon a flexible cylinder.
Resumo:
The present document deals with the optimization of shape of aerodynamic profiles -- The objective is to reduce the drag coefficient on a given profile without penalising the lift coefficient -- A set of control points defining the geometry are passed and parameterized as a B-Spline curve -- These points are modified automatically by means of CFD analysis -- A given shape is defined by an user and a valid volumetric CFD domain is constructed from this planar data and a set of user-defined parameters -- The construction process involves the usage of 2D and 3D meshing algorithms that were coupled into own- code -- The volume of air surrounding the airfoil and mesh quality are also parametrically defined -- Some standard NACA profiles were used by obtaining first its control points in order to test the algorithm -- Navier-Stokes equations were solved for turbulent, steady-state ow of compressible uids using the k-epsilon model and SIMPLE algorithm -- In order to obtain data for the optimization process an utility to extract drag and lift data from the CFD simulation was added -- After a simulation is run drag and lift data are passed to the optimization process -- A gradient-based method using the steepest descent was implemented in order to define the magnitude and direction of the displacement of each control point -- The control points and other parameters defined as the design variables are iteratively modified in order to achieve an optimum -- Preliminary results on conceptual examples show a decrease in drag and a change in geometry that obeys to aerodynamic behavior principles
Resumo:
Nowadays, Caspian Sea is in focus of more attentions than past because of its individualistic as the biggest lake in the world and the existing of very large oil and gas resources within it. Very large scale of oil pollution caused by development of oil exploration and excavation activities not only make problem for coastal facilities but also make severe damage on environment. In the first stage of this research, the location and quality of oil resources in offshore and onshore have been determined and then affected depletion factors on oil spill such as evaporation, emulsification, dissolution, sedimentation and so on have been studied. In second stage, sea hydrodynamics model is offered and tested by determination of governing hydrodynamic equations on sea currents and on pollution transportation in sea surface and by finding out main parameters in these equations such as Coriolis, bottom friction, wind and etc. this model has been calculated by using cell vertex finite volume method in an unstructured mesh domain. According to checked model; sea currents of Caspian Sea in different seasons of the year have been determined and in final stage different scenarios of oil spill movement in Caspian sea on various conditions have been investigated by modeling of three dimensional oil spill movement on surface (affected by sea currents) and on depth (affected by buoyancy, drag and gravity forces) by applying main above mentioned depletion factors.
Resumo:
The performance of supersonic engine inlets and external aerodynamic surfaces can be critically affected by shock wave / boundary layer interactions (SBLIs), whose severe adverse pressure gradients can cause boundary layer separation. Currently such problems are avoided primarily through the use of boundary layer bleed/suction which can be a source of significant performance degradation. This study investigates a novel type of flow control device called micro-vortex generators (µVGs) which may offer similar control benefits without the bleed penalties. µVGs have the ability to alter the near-wall structure of compressible turbulent boundary layers to provide increased mixing of high speed fluid which improves the boundary layer health when subjected to flow disturbance. Due to their small size,µVGs are embedded in the boundary layer which provide reduced drag compared to the traditional vortex generators while they are cost-effective, physically robust and do not require a power source. To examine the potential of µVGs, a detailed experimental and computational study of micro-ramps in a supersonic boundary layer at Mach 3 subjected to an oblique shock was undertaken. The experiments employed a flat plate boundary layer with an impinging oblique shock with downstream total pressure measurements. The moderate Reynolds number of 3,800 based on displacement thickness allowed the computations to use Large Eddy Simulations without the subgrid stress model (LES-nSGS). The LES predictions indicated that the shock changes the structure of the turbulent eddies and the primary vortices generated from the micro-ramp. Furthermore, they generally reproduced the experimentally obtained mean velocity profiles, unlike similarly-resolved RANS computations. The experiments and the LES results indicate that the micro-ramps, whose height is h≈0.5δ, can significantly reduce boundary layer thickness and improve downstream boundary layer health as measured by the incompressible shape factor, H. Regions directly behind the ramp centerline tended to have increased boundary layer thickness indicating the significant three-dimensionality of the flow field. Compared to baseline sizes, smaller micro-ramps yielded improved total pressure recovery. Moving the smaller ramps closer to the shock interaction also reduced the displacement thickness and the separated area. This effect is attributed to decreased wave drag and the closer proximity of the vortex pairs to the wall. In the second part of the study, various types of µVGs are investigated including micro-ramps and micro-vanes. The results showed that vortices generated from µVGs can partially eliminate shock induced flow separation and can continue to entrain high momentum flux for boundary layer recovery downstream. The micro-ramps resulted in thinner downstream displacement thickness in comparison to the micro-vanes. However, the strength of the streamwise vorticity for the micro-ramps decayed faster due to dissipation especially after the shock interaction. In addition, the close spanwise distance between each vortex for the ramp geometry causes the vortex cores to move upwards from the wall due to induced upwash effects. Micro-vanes, on the other hand, yielded an increased spanwise spacing of the streamwise vortices at the point of formation. This resulted in streamwise vortices staying closer to the wall with less circulation decay, and the reduction in overall flow separation is attributed to these effects. Two hybrid concepts, named “thick-vane” and “split-ramp”, were also studied where the former is a vane with side supports and the latter has a uniform spacing along the centerline of the baseline ramp. These geometries behaved similar to the micro-vanes in terms of the streamwise vorticity and the ability to reduce flow separation, but are more physically robust than the thin vanes. Next, Mach number effect on flow past the micro-ramps (h~0.5δ) are examined in a supersonic boundary layer at M=1.4, 2.2 and 3.0, but with no shock waves present. The LES results indicate that micro-ramps have a greater impact at lower Mach number near the device but its influence decays faster than that for the higher Mach number cases. This may be due to the additional dissipation caused by the primary vortices with smaller effective diameter at the lower Mach number such that their coherency is easily lost causing the streamwise vorticity and the turbulent kinetic energy to decay quickly. The normal distance between the vortex core and the wall had similar growth indicating weak correlation with the Mach number; however, the spanwise distance between the two counter-rotating cores further increases with lower Mach number. Finally, various µVGs which include micro-ramp, split-ramp and a new hybrid concept “ramped-vane” are investigated under normal shock conditions at Mach number of 1.3. In particular, the ramped-vane was studied extensively by varying its size, interior spacing of the device and streamwise position respect to the shock. The ramped-vane provided increased vorticity compared to the micro-ramp and the split-ramp. This significantly reduced the separation length downstream of the device centerline where a larger ramped-vane with increased trailing edge gap yielded a fully attached flow at the centerline of separation region. The results from coarse-resolution LES studies show that the larger ramped-vane provided the most reductions in the turbulent kinetic energy and pressure fluctuation compared to other devices downstream of the shock. Additional benefits include negligible drag while the reductions in displacement thickness and shape factor were seen compared to other devices. Increased wall shear stress and pressure recovery were found with the larger ramped-vane in the baseline resolution LES studies which also gave decreased amplitudes of the pressure fluctuations downstream of the shock.
Resumo:
The engineering of liquid behavior on surfaces is important for infrastructure, transportation, manufacturing, and sensing. Surfaces can be rendered superhydrophobic by microstructuring, and superhydrophobic devices could lead to practical corrosion inhibition, self-cleaning, fluid flow control, and surface drag reduction. To more fully understand how liquid interacts with microstructured surfaces, this dissertation introduces a direct method for determining droplet solid-liquid-vapor interfacial geometry on microstructured surfaces. The technique performs metrology on molten metal droplets deposited onto microstructured surfaces and then frozen. Unlike other techniques, this visualization technique can be used on large areas of curved and opaque microstructured surfaces to determine contact line. This dissertation also presents measurements and models for how curvature and flexing of microstructured polymers affects hydrophobicity. Increasing curvature of microstructured surfaces leads to decreased slide angle for liquid droplets suspended on the surface asperities. For a surface with regularly spaced asperities, as curvature becomes more positive, droplets suspended on the tops of asperities are suspended on fewer asperities. Curvature affects superhydrophobicity because microscopic curvature changes solid-liquid interaction, pitch is altered, and curvature changes the shape of the three phase contact line. This dissertation presents a model of droplet interactions with curved microstructured surfaces that can be used to design microstructure geometries that maintain the suspension of a droplet when curved surfaces are covered with microstructured polymers. Controlling droplet dynamics could improve microfluidic devices and the shedding of liquids from expensive equipment, preventing corrosion and detrimental performance. This dissertation demonstrates redirection of dynamic droplet spray with anisotropic microstructures. Superhydrophobic microstructured surfaces can be economically fabricated using metal embossing masters, so this dissertation describes casting-based microfabrication of metal microstructures and nanostructures. Low melting temperature metal was cast into flexible silicone molds which were themselves cast from microfabricated silicon templates. The flexibility of the silicone mold permits casting of curved surfaces, which this dissertation demonstrates by fabricating a cylindrical metal roller with microstructures. The metal microstructures can be in turn used as a reusable molding tool. This dissertation also describes an industrial investment casting process to produce aluminum molds having integrated microstructures. Unlike conventional micromolding tools, the aluminum mold was large and had complex curved surfaces. The aluminum was cast into curved microstructured ceramic molds which were themselves cast from curved microstructured rubber. Many structures were successfully cast into the aluminum with excellent replication fidelity, including circular, square, and triangular holes. This dissertation demonstrates molding of large, curved surfaces having surface microstructures using the aluminum mold. This work contributes a more full understanding of the phenomenon of superhydrophobicity and techniques for the economic fabrication of superhydrophobic microstructures.